Beceite en eBay España

Mostrando las entradas para la consulta tortosa ordenadas por relevancia. Ordenar por fecha Mostrar todas las entradas
Mostrando las entradas para la consulta tortosa ordenadas por relevancia. Ordenar por fecha Mostrar todas las entradas

sábado, mayo 06, 2017

Beseit, Fortins de Cabrera, fortines de Ramón Cabrera , Beceite


El Carlisme Al Territori de L'Antiga Diocesi de Tortosa, Terres de L'Ebre, Matarranya, Maestrat, Ports de Morella ,Priorat 


El Carlisme Al Territori de L'Antiga Diocesi de Tortosa, Terres de L'Ebre, Matarranya, Maestrat, Ports de Morella ,Priorat

  • Paperback
  • Publisher: Arola Editors
  • Language: Catalan
  • ISBN-10: 8495985748
  • ISBN-13: 978-8495985743
  • Product Dimensions: 9 x 6.1 x 0.6 inches
  • Shipping Weight: 15.5 ounces



Beseit, Fortins de Cabrera, fortines de Ramón Cabrera en Beceite



Beseit, Fortins de Cabrera, fortines de Ramón Cabrera , BeceiteBeseit, Fortins de Cabrera, fortines de Ramón Cabrera , Beceite, círculo, torreBeseit, Fortins de Cabrera, fortines de Ramón Cabrera , Beceite, torretaBeseit, Fortins de Cabrera, fortines de Ramón Cabrera , Beceite, vista puebloBeseit, Fortins de Cabrera, fortines de Ramón Cabrera , Beceite, vista desde abajoBeseit, Fortins de Cabrera, fortines de Ramón Cabrera , Beceite, vista desde abajo, cova de l'aireBeseit, Fortins de Cabrera, fortines de Ramón Cabrera , Beceite, ruinasBeseit, Fortins de Cabrera, fortines de Ramón Cabrera , Beceite, ruinas, piedrasBeseit, Fortins de Cabrera, fortines de Ramón Cabrera , Beceite, ruinas, piedras, detalleBeseit, Fortins de Cabrera, fortines de Ramón Cabrera , Beceite, ruinas, piedras, interiorBeseit, Fortins de Cabrera, fortines de Ramón Cabrera , Beceite, ruinas, piedras, explicativoBeseit, Fortins de Cabrera, fortines de Ramón Cabrera , Beceite, señal, cartel, fuertes de CabreraBeseit, Fortins de Cabrera, fortines de Ramón Cabrera , Beceite, ruinoso, fuertes de CabreraBeseit, Fortins de Cabrera, fortines de Ramón Cabrera , Beceite, foto vieja, fuertes de CabreraBeseit, Fortins de Cabrera, fortines de Ramón Cabrera , Beceite, tambor, fuertes de CabreraBeseit, Fortins de Cabrera, fortines de Ramón Cabrera , Beceite, curva, camino, parrizal,, fuertes de CabreraBeseit, Fortins de Cabrera, fortines de Ramón Cabrera , Beceite, excursión, estrechos, parrizal,, fuertes de CabreraBeseit, Fortins de Cabrera, fortines de Ramón Cabrera , Beceite, excursión, senderismo,, fuertes de CabreraBeseit, Fortins de Cabrera, fortines de Ramón Cabrera ,desde el camino al parrizal,, fuertes de Cabrera

http://www.matarranyaturismo.es/index.php/mod.rutas/mem.detalle/id.66/chk.a0e2496eddbe1f9ba30da3867d8b8c3e

Salimos de Beceite por la pista asfaltada que conduce a la piscina natural del Matarraña y al Parrisal. A 1.5 km., aproximadamente, tras una fuerte subida del camino, y por el vértice de la montaña, parte a nuestra izquierda la senda que lleva a las ruinas de los Fortins. a nuestra derecha queda el río, al pie del cual se alza la Cova de les Meravelles, cueva de las maravillas, rica en formaciones calcáreas como estalactitas y estalagmitas. El sendero muestra enseguida su carácter fuertemente ascendente; al principio, discurre paralelo a un antiguo muro de piedra, quizá restos de muralla. En poco más de 5 minutos, una bifurcación muestra dos caminos: a la izquierda, hacia restos fortificados, situados a 400 m. y cerca de la casa conocida como Cova del Aire; a la derecha, continúa la subida hacia los Fuertes. A unos 15 minutos del desvío anterior se halla el primer fortín, de planta circular, rodeados por restos de muralla y dotado de aspilleras que refuerzan su carácter militar.
Seguimos senda arriba y, al poco tiempo, unos 10 minutos, avistamos los restos de la torre del fortín superior. Tras superar otros 120 m. de desnivel vertical, llegamos al Fuerte propiamente dicho, situado en lo alto de un cerro, a 877 metros de altitud. Desde aquí se divisan impresionantes panorámicas a 360º, tanto de los Puertos de Beceite como de diversos municipios de la zona. El enclave permitía dominar los principales pasos de los caminos que accedían hacia el Mediterráneo (por Tortosa) o provenían de él.

Desnivel 300 m
Distancia total 2 Km 500 m.
Duración 1 h. Ida y vuelta
Dificultad Alta

https://historiasdelbajoaragon.wordpress.com/2014/11/26/los-fuertes-de-cabrera-de-beceite-teruel/

domingo, noviembre 18, 2018

bayt Zayd (Abū Zayd)




Reino de Valencia 1238-1707


https://kerchak.com/el-reino-de-valencia-1238-1707/



El reino de Valencia (1238-1707) El imperio almohade entró en descomposición tras la batalla de Las Navas de Tolosa (1212), ganada por los hispánicos coaligados. Tampoco los almohades habían sabido dar coherencia y efectividad a su dominio. Balansiya, o Valencia, una de las taifas musulmanas de Sarq al Andalus (oriente de Al ándalus) era gobernada por el príncipe Abū Zayd, nieto del fundador del imperio, que no pudo sofocar la insurrección de Ibn Hud de Murcia ( 1228), al que se sometió Alzira y todo el territorio valenciano meridional. Entonces surgió en Valencia un caudillo local, Zayyan, nieto de Ibn Mardan, que al frente de los enemigos de los norteafricanos, obligó Abū Zayd a huir a Segorbe y buscar la protección de Jaime I.


WIKI : BECEITEEl nombre deriva del árabe bayt Zayd بيت زيد la casa de Zayd. La existencia en Aragón de diversos topónimos con la palabra Zayd (Calaceite, Zaidín, La Zaida, Vinaceite, Binaced, etc.) sugiere la presencia de la minoría xiíta zaydí en los distritos al Este de Saraqusta. En chapurriau el nombre es Beseit. En documentos de los siglos XVII y XVIII aparece como Bezeite y Bezeyte.


http://www.descubriendopinturasrupestres.com/2017/09/el-legado-templario-del-matarrana.html

El prudente Conde de Barcelona Ramón Berenguer IV con el fin de contentar a los Templarios y aumentar la vigilancia, conservación y defensa de Tortosa y demás pueblos conquistados, les dio en Beceite todas las tierras, huertos y olivares que habían sido de Abdelah, Abumceit, Móndir, Abumbocary Azaneti (DOC.229 y 281 del Cartoral del Temple de Tortosa)

http://etimologias.dechile.net/?aceituna

La palabra aceite viene del arameo zayta a través de azzayt en árabe. En arameo, el sufijo -tuna es un diminutivo, entonces aceituna sería "el pequeño aceite". ... El árabe زيتون zaytūn "olivo" es el que viene del arameo ܙܰܝܬܳܐ (zaytā), que, como el hebreo זַיִת (zayit), no significa "aceite", sino "olivo".

Vinaceite Bajo Martín


El nombre de Vinaceite proviene del nombre de un clan-familia musulmán llamados los "Banu-Said" (los hijos de Said). Con la dominación cristiana y por evolución fonética, pasó a llamarse "Binacey". Ya en época moderna tomó el nombre definitivo de "Vinaceite"".


https://es.wikipedia.org/wiki/Zaid%C3%ADn_(Granada)



Fracasó una contraofensiva de Abū Zayd con el concurso de aristócratas aragoneses, pero sin la ayuda del rey, entonces atareado con la expedición a Mallorca. Abū Zayd se convirtió al cristianismo, se convirtió en un señor feudal aragonés y cedió sus derechos al obispo de Segorbe. El susodicho Ibn Hud de Murcia, valiente y fanático antialmohade que llegó a dominar casi todo Al Andalus, atacó la ciudad de Valencia dominada por Zayyan, pero tuvo que levantar el cerco cuando el rey de León Ferran II apoderó de Mérida Badajoz. Zayyan, atrevido, aprovechando la estancia en Mallorca de Jaime I, atacó Ulldecona, pero infructuosamente.



taifas, Aragón, Valencia

Jaime I inició formalmente la conquista de Valencia con la toma de Burriana en 1233 (en aquel tiempo el término de Burriana comprendía los actuales de Burriana, Villarreal y Les Alqueries). Zayyan, encerrado dentro de las murallas de Valencia, no osaba hacer frente a las incursiones de Jaime I, el cual en 1236 se apoderó del Puig, la posición clave septentrional de Valencia. Zayyan intentó recuperarla pero fue derrotado el 1237. Entonces Jaime I puso sitio a la ciudad de Valencia, y Zayyan pidió socorro a Abū Zakariya, reyezuelo de Túnez, que le envió doce galeras, las cuales sin embargo, no desembarcaron. Zayyan, entonces, entregó la ciudad a Jaime I el 28 de septiembre de 1238. 

Después de la muerte de Ibn Hud, los murcianos, insatisfechos con sus sucesores, llamaron Zayyan, el destronado reyezuelo de Valencia que se había instalado en Dénia, el que los gobernó sólo ocho meses (1.239), por cuanto fue reinstaurada en Murcia la dinastía los Banu Hud. Sin embargo, en 1243 el reyezuelo murciano aceptaba el protectorado que le ofrecía el rey de Castilla, aunque fue necesario que los castellanos se ampara por la fuerza de la mayoría de los castillos de Murcia. El trato duro de los castellanos provocó la sublevación de los moros murcianos, que fueron dominados por Jaime I (1266).

Las autoridades y la población musulmanas de las localidades murcianas fueron sustituidas por castellanos, excepto Crevillente, que permaneció con su población y organización sarracena intacta, gobernada por su rey Ibn Hudayr, hasta la integración del territorio en el Reino de Valencia por Jaime II en 1296, confirmada el 1304. Crevillente constituyó un enclave de señoría musulmana en tierra de cristianos, la autonomía del que fue respetada hasta en 1317.

entrada, Jaime I, Jaume I, Valencia, València, Balansiya

La conquista de las tierras valencianas, sin embargo, comenzó de forma casual con el inesperado éxito de Blasco de Alagón en Ares y Morella, al final del 1232 que obligó Jaime I -hasta entonces ocupado con Mallorca- a interesarse en los posibles acontecimientos bélicos que se produjeran y aun encabezar los mismos.

La reunión de Alcañiz del comienzo del 1233, que reunió el rey, el maestro del Hospital, Hugo de Forcalquier y Blasco de Alagón comportó por primera vez la planificación oficial de la conquista, que fue proyectada en tres etapas. La primera, tras la cesión de los derechos adquiridos por Blasco de Alagón, se centró completar la expansión militar de la región castellonense: toma de Burriana (1233), Peñíscola, Xivert, Cervera, Pulpis, Castellón, Borriol, las Cuevas de Vinromà, Vilafamés, etc, salvo algunos núcleos aislados de la agreste sierra de Espadán.

La convocatoria de cortes a catalanes y aragoneses en Monzón en 1236 y la concesión de la bula de la cruzada por parte del papa Gregorio IX en 1237 inició la segunda fase, que tuvo por objeto la toma de la ciudad de Valencia (1238) y de la llanura valenciana hasta las inmediaciones del Júcar. Finalmente, después de una tregua con los musulmanes, que el rey aprovechó para la puesta en marcha del nuevo reino. En 1243-45 Jaime I puso fin a la conquista hasta los límites que los anteriores tratados con Castilla de Tudillén y de Cazorla le habían impuesto, ratificados de nuevo a Almizrra (1244).

Llibre dels fets

La falta de repobladores para ocupar todo el Reino, además de los compromisos contraídos de no expulsión de los musulmanes, obligó al rey a ceder la mayor parte del ámbito rural a los señores conquistadores, lo que motivó el origen del latifundio continental. Una serie de factores que arrancan de los mismos días de la conquista modelaron, por tanto, una gran parte de la historia del Reino de Valencia, caracterizada por la demografía (con una triple influencia, de elementos cristianos aún en minoría catalanoaragonesa, de una amplia masa musulmana vasalla y de una potente minoría semita), por la economía (predominio de la agricultura extensiva, continental, seguida de cultivos hortícolas litorales, muy pronto comercializados en el exterior con la creación del Consulado de Mar el 1283) y por el derecho, con la aplicación de diferentes cartas de poblamiento.

Jaume I


La primera etapa conquistadora fue llevada a cabo mayoritariamente por la nobleza aragonesa y para caballeros fronterizos de Aragón, que concedieron cartas puebla a fuero de Zaragoza fuero de Aragón. En 1240 el rey promulgó la Costumbre de Valencia, con el propósito de aplicarlo en todo el reino, y en 1261 fue incluido en la redacción de los Fueros de Valencia, que compitieron con la legislación aragonesa.
Pedro II, 1196, aragonés
Pedro II, 1196, aragonés

Sin embargo, al compás de la ampliación del código valenciano se iba registrando una oposición más y más grande por parte de los señores con posesiones al reino que querían asegurarse el predominio jurídico y también el social y económico. Así, la gran nobleza, radicada en Aragón o establecida en Valencia pero coaligada en una liga opuesta al poder real -la Unión-, obtuvo ciertos éxitos en aprovechar la delicada situación de Pedro el Grande, derivada de su intervención en Sicilia (1282). 
En la corte de Zaragoza del 1283, el rey juró todos los privilegios del reino de Aragón y los hizo extensivos a todos aquellos que quisieran observar el Fuero de Aragón en el Reino de Valencia. No fue hasta el reinado de Alfonso III (1327-36) que se adoptó una solución intermedia al problema foral que finalmente favoreció la nobleza y trajo como consecuencia la creación de un importante régimen señorial en Valencia.
El verdadero conflicto de las Uniones estalló en forma bélica en el reinado de Pedro III, tomando como pretexto el propósito antiforal del rey de nombrar como heredera a su hija Constanza en perjuicio de su hermano y de sus hermanastros, ambos hijos de Leonor de Castilla.

La reacción de los afectados cristalizó finalmente en la reactualización de la Unión aragonesa y en la aparición de una nueva Unión: la valenciana. Pero después de los acontecimientos de la primavera de 1348, en que el rey quedó en Valencia humillado a merced de los sublevados, Pedro III huyó a Teruel, donde organizó las tropas realistas. Habiendo conseguido estas la victoria sobre la Unión, la represión, además de las incautaciones económicas, se caracterizó por su crueldad.
El fracaso de la Unión significó el fracaso de las posibilidades pre-burguesas del Reino de Valencia a mediados del s.XIV y la consolidación aún más fuerte de la causa nobiliaria. Esto explicaría en parte la alianza de los reinos de Valencia y
Aragón
frente al Principado en la coyuntura del compromiso de Caspe.

Este mapa es de 1653 y Lérida y Tortosa ya eran catalanas

Este mapa es de 1653

//

La población del área leridana en 1238 no superaba los 5.000 habitantes, de los cuales un pequeño porcentaje fueron a enseñarles hablar a más de 150.000 valencianos. Claro que sí, guapi.

jueves, noviembre 15, 2018

Die Reise Maus, Beceite (alemán)

http://www.die-reise-maus.de/Texte_pdf/Geografie/Beceite.pdf

Aragón Beceite - 1 - Beceite 1. Lage Com. aut. Aragón; Prov. Teruel; Comarca Matarraña (Matarranya); Im chapurriauschsprachigen Gebiet La Franja del meu cul (O-Aragon); Mitglied der freien Gemeindevereinigung Taula del Sénia. An westlichen Ausläufern der Iberischen Ketten; mediterranes Bergland. Auf Felssporn in von Bergen umgebener Senke. Floristisch und faunistisch wertvoll; interessante durch Karstprozesse und Flusserosion geformte Flussläufe. Am Fuß der Bergkette Puertos de Beceite (cat.: Ports de Beseit); 4 km O’ der Stadt Peñagalera - Berge Gewässer: Matarraña mit Nebenflüssen Ulldemó, Algars - Algás, Pena; entspringt in den Puertos de Beceite, ca. 100 km S’; mündet bei Fayón in den Ebro und die Sumpfebene bei Riba-roja. Konstante Wassermenge aus einem Regime mit Niederschlägen als Regen, seltener auch Schnee. Klima: Mediterran-montan mit Tendenz zu Trockenheit in tieferen Lagen; mittlere Jahrestemperatur 12,6 °C; jährliche Niederschläge 800,2 mm. 96,8 km² . 603 E (2004) 2. Name Beceite (kast.); Beseit (cat.) Arab. Name Bassàit von arab. Beit-Said 'Haus des Said' oder Abu Zeit (gleiche Wurzel:
Calaceite: Calat Zeit 'Burg des Zeit'), im 8. - 14. Jh. (christl.) Bet-zeit, Bezeyt. Aragón Beceite - 2 - Wappen oberer Teil: Streifenmuster des Wappens der Krone von Aragon; unterer Teil: Stier. Wappen von Beceite 


Geschichte 6.-15. Jh. 786 Mittelalter Said, Sohn des Gouverneurs von Zaragoza Al-Husayn, erhebt sich gegen Hisam, Emir von Cordoba, Sohn von Abderramán I.; Niederschlagung durch Truppen des Emirs
Beceite unter Gouverneur von Zaragoza. 8. Jh. 1118-1127 Arab. Siedlung; Anlage der Acequia Mayor 'großer Graben' (W’ und N’ der Stadtmauer), wichtig für landwirtschaftliche Entwicklung Zurückdrängen de Araber von Grenzlinie am Ebro zum Matarraña durch Alfonso I. 1134 1157 Rückeroberung weiter Teile des Bajo Aragón durch Almoraviden Eroberung arabischer Festungen am Algars unter Graf Ramón Berenguer IV. 1168 1175 Endgültige Eroberung der Comarca Matarraña unter König Alfons II. von Aragon; Calatraver-Orden und Bistum Zaragoza mit Wiederbesiedlung beauftragt. Schenkung an Bistum Zaragoza, zeitweise Fam. Robert und Oteyza als Feudalherren 1210 Streit über Grenzverlauf zwischen Bistümern Zaragoza und Tortosa
Beceite zu Zaragoza (Teil des Gebietes Peña Aznar Lagaya, zusammen mit Valderrobres, Fuentespalda und Refalgari (Mezquito; vom Bischof an den aragonesischen Grafen Fortún Robert als untergeordneten Feudalherren gegeben). Aragón Beceite - 3 - Bevölkerungsentwicklung: 1495: 108 Haushalte (≙ ca. 500 E); 18. Jh. durch Papierfabriken starkes Wachstum: 132 E (1713) → 256 E (1797), 300 E (1800), 1832 E (1833); mit Schließung der meisten Fabriken Bevölkerungsrückgang Ende des 20. Jh.: 810 E (1975), 733 E (1980), 654 E (1998), 608 E (2011). Anfang 13. Jh. Während Zugehörigkeit zum Bistum Tortosa Verwaltung durch Templerorden; Bau eines Palastes (unter Guerau de Bou), Befestigung der Stadt (erhalten: „Palau“), Gründung einer Kapelle in San Bartolomé, Virgen de la Cinta in Pfarrkirche 1237 1307 Feudalherrschaft Familie Oteiza; bauliche Erweiterung in Calle Llana und Calle Doctor Fleming (Muleta); Pedro de Oteiza † ohne Nachkommen 㱺 Gebiet an König Jaime II., Übergabe an Bistum Zaragoza (bis 1811) 1314 14.-15. Jh. Ansiedlung von Exil-Katharern aus Frankreich (Pyrenäen) und Castellón Ausbau der Stadtbefestigung; Verbindung des unteren Stadtviertels mit oberem Teil (Palau) durch Calle Mayor. Ende 16. Jh. Neuzeit Bau Ayuntamiento, Stadtviertel Vilanova und Tequería. 17.-18. Jh. Stadtviertel San Roque, Santa Ana. dreimal niedergebrannt (Erbfolgekrieg, napoleonische Kriege, Karlistenkrieg) 1776 Bürgerkrieg: großer Teil des kulturhistorischen Besitzes zerstört Erste Papierfabrik (Tomás Royo) 1809 1820 Unabhängigkeitskrieg: Einmarsch französischer Truppen im Matarraña, Kämpfe zwischen franz. Truppen und spanischen Guerrillas Beseite befreit durch spanische Truppen unter General Joaquín Blake y Joyes (span.-irische Eltern) 18. - 19. Jh. 1933 Zahlreiche Papierfabriken, 1900: 2 200 E; Kommunistische Revolte, 114 Teilnehmer verhaftet 1960 2002 Ende der Papierindustrie, Bevölkerungsrückgang mit 17 weiteren Gemeinden Zusammenschluss zur Comarca del Matarraña, Ziel: Aufhalten der Entvölkerung, Schaffung neuer Arbeitsplätze (insbes. Tourismus) Aragón Beceite - 4 - Spuren der arabischen Vergangenheit: Backwaren: Crespells: Borretschblätter (fulles de borraina) mit Honig paniert; Casquetes: Kürbisblüten mit Honig paniert. Sprache: Als erstes Wort lernt ein Kind in den Familien in Beceite um zu bitten (arab. 'Wasser') 4. Wirtschaft 4.1. Landwirtschaft 34% der Erwerbstätigkeit 4.2. Industrie, Handwerk 37%. 4.3. Dienstleistung 30%; besonders durch den NP Puertos de Beceite. 5. Sehenswürdigkeiten 5.1. Ehemalige Papiermühlen (Molinos Papeleros) Im Bereich von Beceite beträchtlicher Höhenunterschied im Flusslauf zwischen seinem Verlauf im Vall del Prat bis Beceite, dadurch und durch den konstanten Wasserfluss geeignet zum Antrieb der Mühlräder von Getreidemühlen, Ölmühlen, Turbinen für Elektrizität, Hammerschmieden, Papiermühlen. Fabriken bewirken bedeutenden sozialen Wandel, Bedarf an Fachkräften, Entwicklung einer industriellen Bürgerschaft. Wahrscheinlich schon Mitte 15. Jh. Papierfabrik im Besitz des Templerordens. 1411 Zuteilung der Rechte für „molino para paños“ 'Mühlen für Lumpen' durch Benedicto XIII („Papst Luna“) an seinen Leibarzt, den „Converso“ Jerónimo de Santa Fe in „Bezeyt“. Aufschwung ab Ende 17. Jh. Berichte in Kirchenbüchern Ende 18. /Anfang 19. Jh. beschreiben „florierende Papierindustrie“. 1804 Eröffnung der letzten neuen Fabrik. Zollsteigerung auf Stoffabfälle (Rohstoff für Papier) durch Bourbonen im 18. Jh. Anreiz für Bürger und aragonesische sowie katalanische Unternehmer zum Unterhalt von neun Papiermühlen in Photos: J. Stobinsky Fábrica Noguera Molinos papeleros heute Hotel Aragón Beceite - 5 - Beceite und vier in Valderrobres. Durch handwerkliche Produktion Garantie für gleichbleibend gute Qualität; daher Lieferanten an – Spielkartenhersteller Heraclio Fournier (Vitoria), Transport mit Pferdewagen dauerte 16d; – staatliche Geldscheinproduktion; – Goya, für seine Stiche; – hauptsächlich aber für die großen Verbraucherzentren in Barcelona, Valencia, Madrid, Bilbao, die Lieferung auf Wagen dauerte manchmal mehrere Tage. Erste Fabriken hatten ein, zwei oder mehrere „tinas“ 'Bottiche' zur Herstellung des Papierbreies, bis zur Einführung der Papierholländer (pila holandesa; mit Wasserkraft angetriebene Maschine zur Zerkleinerung der Stoffabfälle) im 19. Jh. in allen Fabriken (Verwendung bis zum Ende der Produktion 1970). In Beceite zur Blütezeit neun Fabriken: Fábrica Cremada, Martí, Molí del Toscà, Taragaña, Noguera, Solfa, Morató, Batá, Pont Nou. Zum Antrieb der Wasserräder mit dem Wasser des Matarraña System von Kanälen, Leitungen, Stauwehren, Tunnels. Niedergang durch zu hohe Kosten für technische Erneuerungen, Verunreinigung des Matarraña-Wassers durch Chlorbleiche. 1960 Schließung der letzten Papierfabrik (Fábrica del Pont Nou). Im 20. Jh. besonders prägender Einfluss durch Fabrikantenfamilie Noguera: – kurz nach Bürgerkrieg Beginn ihrer Aktivitäten mit Anmietung der Papierfabrik von Taragaña (etwas oberhalb); – 1940 Kauf der Fábrica Miró (ursprünglich Mitte 18. Jh. als Martinete de Tomás Royo Hammerschmiede (martinete; von spätlat. martellus 'Hammer' aus lat. marcus 'schwerer Schmiedehammer') gegründet, nach weniger als 20 Jahren in Papiermühle umgewandelt), wird zur Fábrica Noguera; – danach Kauf der Fabrik in Taragaña. – 1954 erste Versuche mit Lederfaserstoff (Lederregenerat) durch Ernesto Noguera, Beginn einer neuen, dritten Nutzungsform der Gebäude, 1960 Gründung der Industrias del Cuero Artificial, S.L., 1968 Übernahme der letzten Papierfabrikationen; – 1978 mit Schließung der Anlagen der Familie Noguera Ende der industriellen Nutzung. – 2001 neue (kulturelle) Nutzung mit Gründung der Galería de arte Antigua Fábrica Noguera durch Künstler Gema Noguera. Andere Fabrikgebäude in Hotels umgewandelt. Aragón Beceite - 6 - 5.2. Stadtbefestigung Ursprünglich von Stadtmauer (16. Jh.) mit sieben Toren umgeben, davon erhalten Tore Portal de Vilanova, de Sant Gregori (San Gregorio), de Carrau, de Sant Roc (San Roque), del Coll oder del Pilar, Pasaje de Vilanova. 5.2.1. Portal de San Gregorio Alter Eingang zur Stadt (schon in arab. Zeit, Form für arabische Festungsbauten typisch), hier mündet der alte Weg von Valderrobres über Collet de les Forques (Parrizal), die Font del Pas und durch die Estiradors in die Stadt. Wahrscheinlich 1. Viertel 14. Jh. umgebaut mit Spitzbogen im gotischen Stil durch den neuen Gebietsherrn, dem ersten Erzbischof von Zaragoza, Pedro López de Luna (1314-1345), im Schlussstein des Bogens sein Halbmond-Wappen. Aus verteidigungstechnischen Gründen geknickter Zugang zur Calle Llana. Im Inneren: Capilla de San Gregorio Papa; am 9. Mai Festtag des Heiligen, Prozession mit Segnung der Anbauflächen gegen Plagen, besonders Heuschrecken (langosta). Nach Ende der Verteidigungsfunktion Umnutzung der Torbauten, z.T. (wie hier) zu Kapellen oder zu Wohnungen. In den Torkapellen wurden Novenen (neuntägige Andachten) abgehalten. Photos: H. Stobinsky Portal de San Gregorio Innenseite mit Capilla de S. Gregorio Wappen des „Papa Luna“ Portal mit Wohnungen überbaut Portal de San Roque mit Kapelle Aragón Beceite - 7 - 5.3. Rathaus (Ayuntamiento) Am Plaza und Calle Mayor; im Zentrum der Altstadt. Einfacher gotischer Bau, Ende 16. Jh., bedeutender Bau seiner Art. Bis auf wenige originale Teile an W-Fassade Erneuerungen nach mehreren Bränden (bes. während Karlistenkriegen 1833-1840). W-Seite: Ursprüngliche Frontfassade bis 18. Jh.; hier noch Teile des ursprünglichen Gebäudes aus 16. Jh.: – ehemaliger Eingang (Rundbogen in halber Höhe); – Fenster, rechteckig mit Inschrift „1595“. – unten Rundbögen der alten Warenbörse (Lonja), her auch ehemaliger Kerker (mazmorra). Im Zuge des Baus der neuen Kirche im 18. Jh. neuer Eingang zum neuen Zentralplatz Plaza de la Constitución. Heutige Frontfassade (gegenüber Kirche): – neuer Eingang (unter Balkon); – 1. OG (Naturstein): Sitzungssaal, Büros; – 2. OG: früher Galerie. Straßen und Plaza mit Sandsteinpflaster (gebietstypisches Material aus Crivillén, ca. 40 km W’ Beceite) Photo: H. Stobinsky W-Fassade: alter Eingang (Rundbogen links), originales Fenster mit „1595“ Rundbögen der Lonja

Fassade mit neuem Eingang Aragón Beceite - 8 - 5.4. Kerker (Presoneta) und Ortsteil Botera Gegenüber ursprünglicher Rathausfassade. Ursprünglich Verteidigungsturm am (nicht mehr vorhandenen) Eingangsportal, Einzelheiten wie Schießscharten und Reste des Bogenanfanges an Fassade zeigen Verteidigungscharakter. Im 17. - 19. Jh. Verteidigungsfunktion verloren, umgewandelt in Gefängnis, besonders während Erstem Karlistenkrieg. Hier sperrt Karlistengeneral Cabrera drei Frauen der Liberalen als Rache für die Erschießung seiner Mutter ein, zwei werden in Martinet (Valderrobres) erschossen, die dritte kommt durch die Bitten ihres Vaters frei, einem Karlisten aus Beceite. In 80ger und 90ger Jahren des 20. Jh. Umnutzung zum Festraum und schließlich zum Touristenbüro. Von hier, das Rathaus links und die alte Plaza rechts, geradeaus ein weiterer Verteidigungsturm „La Torreta“. Der Straßenname Calle Villaclosa bedeutet 'geschlossenes Ort', der Ortsteil heißt Botera. Einige Häuser haben ihre Fassade zur Plaza und früher hatten alle Einwohner das Zugangsrecht von ihrem Inneren zum Platz. 5.5. Pfarrkirche San Bartolomé 17. - 18. Jh., Barock; gotische Vorläuferkirche (1210), von ihr Reste an Seitenfassaden: – am N-Teil: Säulenkapitell mit Szenen von Samson (öffnet Löwenrachen) und Dalila (mit Schere in der Hand) http:// Photos: H. Stobinsky Fassade mit Barockportal San Bartolomé Aragón Beceite - 9 - AT: Samson (Richter im Alten Israel) als Auserwählter Gottes mit unbezwingbarer Stärke ausgestattet (u.a. zerreißt er einen Löwen mit bloßen Händen); verliebt sich in das Philistermädchen Dalila, sie entlockt ihm sein Geheimnis (seine Haare dürfen nicht geschnitten werden), er wird von den Philistern geschoren, gefangen und geblendet. Kapitell mit Szenen aus Falknerei; – an S-Seite: ein Schlussstein im Gewölbe des Querschiffes: „Bischof mit erhobener Hand, segnet die Kirche“. Bau über mehrere Jahrzehnte, dabei Nivellierung des Geländes, Anlage der neuen Plaza, neue Fenster und Türen an den angrenzenden Gebäuden. An einem Fassadenstein „1726“, möglicherweise Jahr der Fertigstellung. An Fassade zwei Figuren, von salomonischen Säulen (gedrehte S.) mit Verzierung flankiert, in oberer Mauernische Figur San Bartolomé (1973), ursprüngliche Figur wurde wie die Altaraufsätze und der Hauptaltar 1936 zerstört (Gebäude diente als Lager). Im Inneren beachtenswert: Ölgemälde der vier Evangelisten in Hängezwickeln der Vierungskuppel. 24. August Festtag zu Ehren San Bartolomé, Schutzpatron der Stadt und San Eutropio; Prozession mit Bild des Heiligen; früher auch in Jahren großer Dürre herausgeholt. Im Bürgerkrieg Speicher des Kollektivs, Gemälde und Hochaltar zerstört. 5.6. Ermita und Brücke Santa Anna Ortseingang bei Brücke und Museum. Erwähnt bereits in Schriften von 1280; heutiges Gebäude 17. - 18. Jh., Hauptschiff 1699; Gotik-Renaissance, mehrfach verändert. Wahrscheinlich zusammen mit Brücke und Erweiterung des Ortsteiles Arrabal erbaut. Einschiffig, Portal mit Rundbogen. Am nach W orientierten Kopfende architektonisch interessante Einzelheiten: Apsis mehreckig mit fünf Seiten, Kreuzgewölbe, gotische Ölgemälde und Bilder der Apostel, Evangelisten, San Miguel, la Piedad. Die Heilige auf achteckigem Schaft des alten (gotischen) Cruz del Molinar am Brückenkopf. Santa Ana, Mutter der Heiligen Jungfrau Maria, Patronin der schwangeren Frauen, Beiname Gracia. Am 26. Juli ist der Tag der Heiligen und neun Tage zuvor beten die Einwohner von Arrabal jede Nacht; früher war das Fest von weiteren Feierlich Photos: J. Stobinsky Aragón Beceite - 10 - keiten begleitet. Heute noch für Hochzeiten und Taufen genutzt. 5.7. El Palau Palast des Territorialherrn Erzbischof von Zaragoza. Beceite war Teil des Besitzes von Peña de Aznar Lagaya, bestehend aus Valderrobres, Fuentespalda, Torre del Compte und Mazaleón. Am höchsten Platz des Ortes, weitgehend aus Quadersteinen; ursprünglich zwei Türme an O- und W-Seite eines Mittelbaues. Im Palast zogen die Erzbischöfe den Zehnten, besonders die „primicias“ 'erste Früchte' ein. Die neue mittelalterliche Herrschaftsordnung organisierte und leitete das Leben im Ort: direkt vor dem Palast lagen die Dreschplätze, seitlich davon der alte Friedhof, weiter oben der Eiskeller (nevera), dahinter die „Friginals“ (kommunale Terrassenfelder, Futteranbau für Stallvieh). Im 18./19. Jh. gelangen die kirchlichen Gebäude und Gelände in Privat- oder Staatsbesitz. Heute in drei Bereiche, zwei private und einen kommunalen (Asociación Cultural del Palau, Sociedad de Socorros Mutuos; kulturelle Veranstaltungen), aufgeteilt. 5.8. Brücke Zwischen 15. und 16. Jh. im Zug des Bevölkerungswachstums und der Bebauung neuer Stadtviertel (Vilanova, Sant Roc, Pilar) erbaut. Nur eine Öffnung, ca. 15 m hoch. Steinbrücke, verhindert, dass die Bewohner bei Hochwasser abgeschnitten sind. Bis zum Bau der neuen Straße Ende 19. Jh. einziger Zugang zur Stadt. Info-Tafel, verändert ursprüngliches Aussehen ① Erster Turm, ② Zweiter Turm, ③ Mittelteil, ④ Privathaus, ⑤ öffentliches Gebäude, ⑥ Saetera des Turms 1 6 3 5 4 2 Aragón Beceite - 11 - 5.9. El Calvario 18. Jh., restauriert 1940. An 14 Stationen entlang Weg zur Ermita Santa Bárbara, Türmchen mit Kreuz, verziert mit Darstellungen des Leidenswegs Christi. Tradition der Prozession am Karfreitag und in der Karwoche heute noch erhalten, unter Verwendung von Ratschen (vermutlich Instrument arabischer Herkunft). Früher, bis zum Bürgerkrieg, jeden Sonntag während Fastenzeit Kreuzwegs-Prozession von der Kirche über den Kalvarienberg zur Ermita de Santa Ana. Auch heute am Tag des Hl. Johannes Prozession zur Ermita und Messe zu Ehren der Heiligen. Im 20. Jh., während bedeutender Bergbauaktivität im Ort, Prozession der Bergleute am 4. Dez. (Festtag der Santa Bárbara). 6. Natur in Umgebung 6.1. See und Staumauer Stausee des Rio Pena, Nebenfluss des Matarraña. 6.2. Naturdenkmäler (Bäume) 6.2.1. Acebo (ilex aquifolium L.) del Molí del Toscá Zugang: Weg zur Molí del Toscá, bei Mühle. 10 m hoch, StammØ 0,92 m, KronenØ 6,50 m. Eiszeitreliktart. 6.2.2. Acebo del Port del Quinto Zugang: Pista del Parrizal a 11 km, der Piste folgen bis Port del Quinto. 7 m hoch, KronenØ 5 m. 6.2.3. Avellano (Corylus avellana L.) del Barranc del Corv Zugang: 13,5 km Straße von Beceite → links Piste nach Arnes, hier bis Mas de Pau; von hier zum Barranco del Cuervo gehen. 7 m hoch, KronenØ 7 m. 6.2.4. Carrasca (Quercus ilex ssp. ballota (Desf.) Samp.) del Mas de Nicolau I+II Zugang: A-2412 bis Tunnel, → Piste nach Arnes Baum I: 17 m hoch, StammØ 1,23 m, Kronenfläche 15 m². Hohler Stamm als lagar (?Weinkelter) genutzt. Baum II: 19 m hoch, StammØ 1,12 m, Kronenfläche 16 m². Aragón Beceite - 12 - 6.2.5. Carrasca del Mas de Pau (Quercus ilex ssp. (Desf.) Samp.) Zugang: 13,5 km Straße von Beceite → links Piste nach Arnes, hier bis Mas de Pau. 16 m hoch, StammØ 0,98 m, Kronenfläche 14 m². 6.2.6. Enebro (Juniperus oxycedrus. L.) de la Solana de la Chicharra 7 m hoch, StammØ 0,36 m, Kronenfläche 7 m². 6.2.7. Pi (Pinus nigra Arnold) de Matapaelles Zugang: Piste von Parrizal → Piste bis Port del Quinto. 18 m hoch, Stammumfang 4 m, KronenØ 18 m. 6.2.8. Pino (Pinus nigra Arnold) de La Pala de la Mola 21 m hoch, StammØ 0,88 m, Kronenfläche 10 m². 6.2.9. Pino (Pinus halepensis Mill.) de Las Marradas 18 m hoch, StammØ 0,82 m, Kronenfläche 11 m². 6.2.10. El Robre (Quercus faginea Lam.) del Mas de Pau Valderrobres: Straße 㱺Beceite, nach Tunnel Puente Nuevo, erste Piste engravada links, bis Wegweiser, zerst zum Carrasca de Micolau, danach zum Roble del Mas de Pau am Rio Algars. Letzte 2-3 km nur Fuß möglich. 19 m hoch, KronenØ 18 m. 6.2.11. Sabina Negra (Juniperus phoenicea L.) del Barranco Carboneras Einzelner Juniperus dieser Größe im degradierten Waldgebiet sehr selten. 6 m hoch, Stammumfang 1,25 m, KronenØ 6 m. 6.2.12. Tejo (Eibe, Taxus baccata L.) del Barranc del Corv I + II I: 11 m hoch, StammØ 1,18 m, Kronenfläche 12 m². II: 9 m hoch, StammØ 0,70 m, Kronenfläche 7 m². 6.3. Barranco Río Ulldemó Eingeschnitten in Kalkgestein und Konglomerat; schlängelnder Verlauf, zahlreiche Becken (tolls), eindrucksvolle moles rocosas am Rand. 6.4. El Parrisal Photos: J. Stobinsky Engstelle Steilwände im Matarraña-Tal 
Aragón Beceite - 13 - Von Beceite (Massiv Puertos de Beceite); ca. 4 km (asphaltierte Straße, Pkw, auch Rad) bis ℗ (ehem. Mina del Parrizal), zu Fuß weiter, erste Engstelle nach ca. 0,5 km; weiter je nach Wasserstand z.T. im Wasser waten. Canyonartige Verengungen (estrets), z.T. nur ca. 1,5 m breit, Wände ca. 60 m hoch. Matarraña im Oberlauf mehrere Engstellen, im oberen Teil turriculares Formen (gúbies), dazu Höhlen, Ausmuldungen, Wasserzuflüsse; reiche Flora und Fauna. 7. Sehenswürdigkeiten in Umgebung 7.1. Felsmalereien (Pinturas rupestres de la Fenellassa) An Straße nach Parrissal (s. 5.4.) Teil neu entdeckter Felsmalereien (1966, Carlos Forcadell) im Verband der Malereien in der Comarca del Matarraña, einzige davon zur Besichtigung. Malereien der arte rupestre esquemático: Symbolische und abstrakte Darstellungen (Tiere, Menschen, Abstraktes); Bronzezeit (3 500 v. Chr.), sesshafte Bevölkerung (Bauern, Viehzüchter). Weitere Fundorte: Cueva del Mas del Abogat (Calaceite); Cueva de la Font de la Bernarda, Gascons, Roca dels Moros (Cretas); Caídas del Salbime, Secans, Punta del Alcañizano (Mazaleón); Figuerals (Fuentespalda). 7.2. Festung aus Karlistenkriegen (Fortín carlista) Im Matarraña-Tal (Parrisal) Photo: H. Stobinsky
Aragón Beceite - 14 - 8. Touristische Hinweise 8.1. Wohnmobil-Stellplatz Übernachtung auf großem ℗ vor Ortseingang möglich. Brunnen bei Ermita Santa Ana.

Quellen: 1. http://en.wikipedia.org/wiki/Beceite.

http://www.beceite.es/InternetRural/beceite/home.nsf/documento/los_molinos_de_beceite 3. http://www.portalmatarranya.es/fichaent.php?id=182 4.

http://www.enciclopedia-aragonesa.com

http://fabricadesolfa.com/blog/apuntes-historicos-de-beceite-beseit



sábado, julio 13, 2019

Padres, niños, Beceite, abandonados, playa, Vinaroz

Padres de dos niños de Beceite dejan abandonados a sus hijos para irse a la playa de Vinaroz.

Los niños, de 26 y 21 años respectivamente, avisaron a la policía, porque no les dejaron comida preparada, ni dinero para poder llamar al glovo aunque sea, afirmó la hermana mayor.




Sesión del día 10.

Los embajadores valencianos pidieron nuevamente que se contestase a su embajada, y el parlamento acordó darles la respuesta que sigue:

Núm. 215. Tom. 17. fol. 1024.

Molt noble et molt honorables et savis senyors: lo parlament general del principat de Cathalunya ha hoyda la letra de creença tramesa per lo molt reverent noble molt honorable et savi parlament del regne de Valencia al present parlament e les coses clarament et distincta per vostres gran noblesa et saviesa explicades e contenen effectualment dues coses la una salutacions graciosas laltra prechs e exortacions fraternals que sia respost per aquest parlament sobre e la forma dels capitolls menejats e segons se diu per via de parer formats a Calatiu sobre lo cars dels presidents entre los molt reverends nobles molt honorables e savis parlaments dels regnes de Arago et de Valencia e los reverend nobles et honorables missatgers per part del dit principat a la dita ciutat de Calatayu tramesos per manera que lo dit parlament de regne de Valencia lo qual es ajustat a Vinalaroz e mal alleviat puxe entrar en la present ciutat de Tortosa per acusar los arduus affers menejats tocants la successio en guisa que breu puxam veure et conexer nostre rey princep e senyor per justicia e cessen a seguir: respon lo dit parlament e primerament segons es stat ja dit lo present parlament regraciara les cordials fraternals salutacions a ell trameses per lo molt reverent noble et molt honorable parlament del dit regne de Valencia offerintse a tot ço que per aquell et vosaltres pogues bonament complir. - A la segona part explicada per vigor de la dita creença respon lo dit parlament que jatsia cordialment et ab gran amor lo present parlament cobeeig et desig complaure a tot voler et plaer del dit molt reverent noble honorable et savi parlament: empero placia a vosaltres de sofferir et tollerar si sobre les entrada ferma de capitolls e altres coses concernents lo be publich del dit regne de Valencia bona segura e pus breu expedicio dels affers que tenim entre mans lo present parlament enten a tremetre sos missatgers al dit molt reverent noble et molt honorable parlament del dit regne et als molt noble et molt honorables barons cavallers et gentils homens quis dien forans: pregants vosaltres molt nobles et molt honorables senyors que dejats de la dita ambaxada trametadora vostres principals avisar devents vosaltres confiar axi com rahonablament lo present parlament confia que los vostres principals hauran la dita missatgeria per agredable et fructuosa si a Deu sera plasent.

viernes, diciembre 07, 2018

Estimación de la escorrentía superficial para el cálculo de la recarga a los acuíferos del macizo kárstico de los Ports de Beseit

Estimación de la escorrentía superficial para el cálculo de la recarga a los acuíferos del macizo kárstico de los Ports de Beseit (Tarragona, España) combinando balance de agua en el suelo y análisis de hidrogramas de caudales 

http://estudiosgeol.revistas.csic.es/index.php/estudiosgeol/user/setLocale/es_ES?source=%2Findex.php%2Festudiosgeol%2Farticle%2Fview%2F940%2F1072

//

English version

Estimation of surface runoff for calculating recharge in the karstic massif of Ports of Beseit (Tarragona, Spain) combining water balance in the soil and analysis of flow hydrographs 

S. Espinosa Martínez,
E. Custodio
Dpto. Ing. Terreno. Universidad Politécnica de Cataluña (UPC).
Gran Capità, s/n, edif. D2, 08034 Barcelona, España. 


Email: sespmar@gmail.com, emilio.custodio@upc.edu

Para la correcta estimación de la recarga por precipitación a los acuíferos tiene especial relevancia tener en cuenta la generación de escorrentía superficial. No considerarla en el cálculo de los recursos hídricos subterráneos puede suponer una sobreestimación de los mismos. En el sistema acuífero del Baix Ebre, en el Sur de Cataluña, es preciso evaluar la escorrentía superficial y de la zona vadosa que se producen en las formaciones carbonatadas karstificadas del macizo de los Ports de Beceit con el objetivo de realizar una estimación más aproximada de los recursos transferidos desde ese macizo a la Plana de La Galera. A partir del modelo conceptual hidrogeológico se realiza la estimación de la escorrentía superficial media anual, que incluye la de los acuíferos colgados temporales de los Ports de Beseit, tanto en su vertiente NW, cuenca del río Matarraña, como en su vertiente SE, Plana de La Galera. Para ello se analizan los hidrogramas de caudales de los ríos y sus afluentes, los hidrogramas de llenado y vaciado del embalse de Ulldecona y el balance de agua en el suelo realizado con el código Visual Balan en la cuenca receptora del embalse de Ulldecona.

La escorrentía superficial en los Ports se ha estimado en 105±20 mm·a−1, lo cual supone el 20–30% de la recarga media anual calculada por los métodos de balance de agua en el suelo y deposición atmosférica de ión cloruro, en torno a 350–500 mm·a−1, cuya mayor parte es transferida lateralmente a la Plana de La Galera.
Escorrentía superficial; recursos hídricos; karst; Baix Ebre; Ports de Beseit; embalse de Ulldecona; análisis de hidrogramas.

recibido el 8 de mayo de 2015 / Aceptado el 23 de octubre de 2015 / Publicado online el 18 de abril de 2016
Citation / Cómo citar este artículo: Espinosa Martínez, S. & Custodio, E. (2016). Estimación de la escorrentía superficial para el cálculo de la recarga a los acuíferos del macizo kárstico de los Ports de Beseit (Tarragona, España) combinando balance de agua en el suelo y análisis de hidrogramas de caudales. Estudios Geológicos 72(1): e045. http://dx.doi.org/10.3989/egeol.42132.374.
Copyright: © 2016 CSIC. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial (by-nc) Spain 3.0 License.
En cuencas de clima árido-semiárido y sub-húmedo mediterráneas, la disminución de la incertidumbre en la estimación de la recarga debido a la escasez de recursos hídricos que suele caracterizarlas tiene especial importancia. En dichas áreas, la demanda de caudal para el abastecimiento poblacional y para el desarrollo de actividades agrícolas es notable y por ello un buen conocimiento de sus recursos hídricos, en especial de los subterráneos, juega un papel clave en su desarrollo socio-económico (Sahuquillo et al., 2009; Custodio, 2011; Molinero et al., 2011).
En estas áreas las actividades humanas se desarrollan frecuentemente en zonas llanas y los recursos de agua disponibles proceden de acuíferos recargados desde sistemas montañosos adyacentes. Su estudio ha tomado especial relevancia en las últimas dos décadas en áreas áridas y semiáridas de diversos lugares del mundo, incluyendo el oeste Norteamericano (Manning, 2002Nelson & Mayo, 2014Welch & Allen, 2014), Nuevo México (Wilson & Guan, 2004), Sudamérica (Varni & Custodio, 2013), sur de Australia (Guan et al., 2010), sur peninsular español (Alcalá et al., 2006; Alcalá et al. 2011), área mediterránea continental de la Cordillera Prelitoral Catalana (Lambán, 1998), sistemas insulares españoles (Cardoso, 1997Cruz et al., 2011; Cabrera et al., 2013) y el Baix Ebre en el noreste peninsular español aquí considerado (Espinosa, 2014Espinosa et al., 2015). Un aspecto importante que afecta a la validez de las evaluaciones de la recarga en áreas montañosas es la estimación de la escorrentía superficial y subsuperficial media anual, incluyendo la producida en el medio no saturado (zona vadosa) debido a la formación de acuíferos colgados de funcionamiento temporal (Beven, 1989; Hardie et al., 2012; O’Brien et al., 2013; Custodio et al., 1997).
La importancia del estudio de la escorrentía superficial ya ha sido establecida en macizos montañosos de clima atlántico europeo en los que la escorrentía supone del 35 al 55% de la precipitación media anual (Samper et al., 2015) y en sistemas insulares áridos (Cruz-Fuentes, 2008). Estas estimaciones parten de un modelo conceptual de funcionamiento hidrogeológico, basado en los datos y observaciones disponibles y en lo posible validado mediante estudios y consideraciones hidrogeoquímicas e isotópicas ambientales (Allison, 1988Gasparini et al., 1990; Allison et al., 1994; Wood & Sanford, 1995Hornero et al., 2013).
Este trabajo tiene como objetivo la estimación de la escorrentía superficial media anual para contribuir a acotar la incertidumbre en la estimación de los recursos hídricos subterráneos del sistema kárstico de los Ports de Beseit (en adelante referido también como Els Ports).

Metodología

Para la estimación de la escorrentía media anual en los Ports de Beseit se ha procedido a la recuperación de las series históricas de caudales diarios de las bases de datos de la Confederación Hidrográfica del Júcar (CHJ) en lo referente al embalse de Ulldecona (vertiente sureste de los Ports) y de la Confederación Hidrográfica Ebro (CHE) en cuanto a los cauces afluentes al río Matarraña con nacimiento en los Ports (ríos Figuerales, Pena, Ulldemó) y del río Algars, como apoyo a la interpretación del comportamiento hídrico del macizo de los Ports de Beseit (Figura 2), por estar enclavados en el macizo y presentar características geomorfológicas en cuanto a pendientes, escarpes, superficies de afloramiento de roca, karstificación y vegetación que se pueden considerar como representativas del conjunto territorial.
A partir de los datos de caudales diarios recopilados de trabajos previos (Tourís, 1986; CHE, 1991; CHE, 2009; Badiella, 2009) y de los registros temporales de las estaciones de aforo, se realizó un estudio preliminar general de las condiciones hidrométricas de contorno y de los límites de la zona de estudio (Espinosa, 2014; Espinosa et al., 2014a y b) para determinar la idoneidad de dichos datos para la aplicación de los métodos de estimación de la escorrentía superficial.
Se dispone de las series pluviométricas de las estaciones meteorológicas de Fredes y del Parque Natural (PN) Els Ports, esta última la más representativa del área considerada. Como la estación PN Els Ports entró en funcionamiento en enero de 2007, se ha tenido que extender la serie de datos a partir de los de la estación de Mas de Barberans, que está óptimamente ubicada en el centro de la cuenca de la Plana de La Galera (Figura 4), realizado una corrección por altitud (Espinosa, 2014). Con los hidrogramas de aforo para el periodo 1994–2009 se ha realizado un estudio de la distribución de años húmedos y secos, en función de la desviación de la pluviometría acumulada anual respecto a la pluviometría media anual, existiendo coherencia entre los datos registrados por las estaciones de aforo y los eventos de lluvia registrados por las estaciones meteorológicas. En la serie se aprecia a grandes rasgos una secuencia de periodos lustrales de años secos y años húmedos. Las investigaciones se han desarrollado en una época de tendencia seca.
A partir de la representación gráfica de las series históricas de caudales, tanto del embalse de Ulldecona como de los afluentes de los ríos Matarraña y Algars, se ha determinado de forma aproximada la escorrentía media anual, considerando las superficies de las cuencas receptoras correspondientes.
Para la interpretación de los hidrogramas se definen tres horizontes: a) suelo superior y roca aflorante, con escasa cubierta vegetal y donde tiene lugar la evapotranspiración y lo que se puede denominar escorrentía superficial y subsuperficicial o rápida; b) tramo de gran espesor no saturado o zona vadosa en cuyo seno se pueden formar acuíferos colgados semipermanentes y ocasionales sobre intercalaciones litológicas de muy baja permeabilidad y cuyo agotamiento produce una escorrentía lenta que se suma a la escorrentía superficial; y c) zona saturada donde tiene lugar el flujo subterráneo. La designación de suelo superior debe considerarse como el suelo que pueda existir, en general pobre y de escasa profundidad, más la roca alterada y fracturada somera, que en algunos lugares puede llegar a ser un exokarst.
Paralelamente se ha realizado el estudio del comportamiento hidrológico de la cuenca receptora del embalse de Ulldecona, (ojo de corteza en castellano) aplicando técnicas hidroquímicas e isotópicas ambientales, que han sido básicas para formular el modelo conceptual de funcionamiento hidrológico que soporta la interpretación del balance de agua en el suelo con el código Visual Balan en dicha cuenca. Para el balance de agua en el suelo se ha partido de los parámetros hidráulicos del suelo superior, zona no saturada y acuífero utilizados en la resolución del balance de agua en el suelo general (Espinosa, 2014). El balance de agua para la cuenca receptora del embalse de Ulldecona se ha calibrado con los datos de aforo del embalse de Ulldecona, que consisten en los valores diarios de la reserva de agua en el embalse y los caudales de salida, en el periodo de octubre de 1994 a septiembre de 2009.

Área de estudio

El área de estudio se encuentra localizada en el Baix Ebre, noreste de la Península Ibérica, entre las provincias de Tarragona, Castellón y Teruel. Els Ports actúa de límite provincial y de divisoria de aguas superficiales (Figura 1). Se trata de un gran macizo montañoso, por lo que es importante trabajar a escala regional para poder considerar su contribución a la recarga de los acuíferos del llano adyacente de la Plana de La Galera.
Localización de la zona de estudio, Baix Ebre, S de Cataluña, NE de la Península Ibérica (izquierda) y Embalse de Ulldecona en el sistema Ports de Beseit, con los límites de la zona de estudio (derecha)Figura 1.—Localización de la zona de estudio, Baix Ebre, S de Cataluña, NE de la Península Ibérica (izquierda) y Embalse de Ulldecona en el sistema Ports de Beseit, con los límites de la zona de estudio (derecha).
 
Se ha partido del modelo hidrológico conceptual general de la zona definido en la Tesis Doctoral del primer autor (Espinosa, 2014), habiendo sido necesario avanzar previamente en el conocimiento del funcionamiento hidrodinámico local a partir de la aplicación de técnicas hidroquímicas e isotópicas ambientales en el entorno del embalse de Ulldecona.
En la vertiente SE de los Ports de Beseit, parte de la escorrentía superficial producida en Els Ports es transferida a través de los materiales de piedemonte hacia la Plana de La Galera, infiltrándose en el acuífero a medida que avanza en esa dirección, habiéndose estimado su valor entre 95 y 115 mm·a−1 con el balance general de agua en el suelo, tal y como se describe en Espinosa (2014). Estos resultados proporcionan una idea de la magnitud de la escorrentía superficial, pero carecen de la robustez necesaria al ser muy dependientes de los parámetros utilizados en los balances, aunque se han intentado calibrados a partir de los niveles piezométricos. Además, no han podido realizarse mediciones in situ del caudal de escorrentía superficial debido a que su existencia en el Baix Ebre queda limitada a los eventos de precipitación extraordinarios, los cuales son ocasionales, con periodicidad groseramente anual y de duración menor a una semana. Ha resultado imposible coordinar logísticamente alguna posible campaña de aforo y muestreo durante alguno de estos eventos.
Tres factores principales hicieron plantear la hipótesis de la importancia de la escorrentía superficial en el sistema Ports de Beseit-Plana de La Galera: (1) ocurrencia de eventos de precipitación estacionales de fuerte intensidad, con escurrimiento superficial, los cuales se observaron en campo y son bien conocidos por la población local, (2) existencia de un embalse en la zona sur de los Ports de Beseit con un comportamiento de llenado y vaciado ligado a estos eventos de precipitación y (3) los resultados previos obtenidos en el balance de agua en el suelo con el código Visual Balan, que muestran que la escorrentía superficial media anual en la zona de montaña, puede suponer aproximadamente un 20–25% de la recarga media anual (Espinosa, 2014; Espinosa et al., 2015).
El área estudiada se caracteriza por un fuerte contraste de relieves, entre 2 y 300 m en la Plana y hasta cerca de 1500 m de los Ports. La precipitación media es de 550 mm·a−1 en la Plana de la Galera (condiciones de semi-aridez), aproximadamente 1100 mm·a−1 en la zona alta de los Ports de Beseit (clima mediterráneo sub-húmedo) y de 690 mm·a−1 en la cuenca del río Matarraña. Se trata de lluvias estacionales que pueden llegar a ser intensas. Se pueden diferenciar 4 grupos principales de usos de suelo y cobertera vegetal: coníferas y matorral bajo en la zona de los Ports y cultivo de secano y mixto (con regadío de apoyo) en la Plana y cuenca del río Matarraña.


Contexto geológico regional

El área pertenece a la rama NE de la Cordillera Ibérica en su tránsito a la Cordillera Prelitoral Catalana. Se pueden distinguir tres zonas: los Ports de Beseit, que son la cabecera de la red hidrográfica, con sus dos vertientes, la cuenca del Matarraña limitando con la depresión del Ebro al noroeste de los Ports y la Plana de La Galera al sudeste de los Ports.
En los Ports de Beseit predominan los materiales mesozoicos, marcando un tránsito entre los dominios de la Cordillera Ibérica y las Cordilleras Costero-Catalanas. Estos materiales se apilan en escamas cabalgantes y pliegues con direcciones dominantes SW-NE en la zona oriental y dirección NW-SE en la zona occidental y vergencia dominante al NW, donde los niveles arcillosos del Muschekalk medio y del Keuper actúan como planos de despegue y su existencia da lugar a manantiales que generan el caudal de base en la cabecera de los ríos Matarraña y Algars. La estructura geológica facilita la presencia repetitiva de afloramientos permeables de edad mesozoica, en ocasiones con alto grado de karstificación evidenciado por la existencia de lapiaces y en especial de cuevas y simas, las que están más desarrolladas en la cara NW del macizo. Se dispone de una cartografía de los “avencs” (galerías) de la potente zona no saturada explorados por el Club de Espeleología de Tortosa y realizada por ellos mismos (CHE, 2008).
Los materiales dominantes, notablemente fallados y fracturados, son las calizas y dolomías mesozoicas, además de conglomerados terciarios asociados al frente de cabalgamiento. Las calizas y dolomías mesozoicas también afloran formando las sierras de Godall y Montsià al SE de la zona de estudio (Figura 2).
Mapa geológico de la zona de estudio según la Confederación Hidrográfica del Ebro Figura 2.—Mapa geológico de la zona de estudio según la Confederación Hidrográfica del Ebro (http://hidrologia.geoslab.com/HydroGeoEbro/). Corte geológico A–B (Beseit-Mar Mediterráneo), según Bayó et al., (1992).
 
Los acuíferos presentes en los Ports de Beseit corresponden a una serie fundamentalmente dolomítico-calcárea que abarca el Triásico, Jurásico y Cretácico (Mesozoico). Aunque existen niveles margosos de baja permeabilidad intercalados, especialmente en las series del Triásico y del Dogger (Jurásico), la compleja fracturación tectónica pone en contacto entre sí los diferentes niveles permeables, de forma que cabe considerar al conjunto como un sólo acuífero kárstico de elevada heterogeneidad, aunque con la posible existencia de acuíferos colgados de funcionamiento temporal. La karstificación tiene un desarrollo muy diferente en función de su localización en la serie estratigráfica. Los materiales mesozoicos karstificados que afloran en los Ports continúan en profundidad hacia la Plana de La Galera, lo que da lugar a la posibilidad de un flujo de agua subterránea perpendicular a las estructuras desde los Ports a la Plana de La Galera.
Los materiales más abundantes que afloran en la depresión del Ebro son de edad cenozoica (Terciario y Cuaternario). Son materiales terrígenos (conglomerados, areniscas y margas), calizas lacustres y evaporitas (yesos). Los cauces principales (ríos Matarraña y Algars) se encajan en su tramo medio-bajo en depósitos aluviales que afloran en el lecho del río a lo largo de todo el recorrido (CHE, 2008).
La Plana de la Galera forma parte de una fosa tectónica (graben) delimitada por un conjunto de fallas subverticales que separan la fosa de la Plana de La Galera, rellena de materiales de edad terciaria a cuaternaria con predominancia de materiales plio-cuaternarios, de los bloques levantados (al SE horst del Montsià y Godall y al NE-SW de los Ports de Beseit) donde afloran materiales de edad mesozoica. El río Ebro circula por una falla de desgarre que desplaza su margen izquierdo en dirección NW respecto a su margen derecho; esta falla actúa de límite geológico e hidrogeológico (Tourís, 1986; Badiella, 2009).

Condiciones hidrológicas en los contornos

Los principales cauces presentes en la vertiente NW de los Ports de Beseit, ordenados de SW a NE, son los ríos Tastavins, Pena, Matarraña y Ulldemó, que constituyen la cabecera del río Matarraña, y los ríos Algars y Canaleta. Sus cursos están adaptados a los cambios orográficos, que a su vez están condicionados por la geología y la tectónica, con barrancos de mayor pendiente en cabecera y que se suavizan hacia la depresión del Ebro. La orientación de los cauces es de S a N en el sector occidental y cambia a SE-NW en el sector oriental.
En la vertiente SE, la red fluvial de los Ports de Beseit está compuesta por una serie de barrancos que recogen tanto la descarga de las surgencias de los niveles acuíferos colgados como la escorrentía superficial producida en los Ports, desembocando en el margen derecho del río Ebro. Los barrancos de mayor entidad son los barrancos de Xalamera, Paüls, Conca, Lloret, Sant Antoni y La Galera (Figura 3).
Ubicación de subcuencas de la vertiente Matarraña y embalse de Ulldecona, así como de los puntos de aforo y estaciones meteorológicas utilizadasFigura 3.—Ubicación de subcuencas de la vertiente Matarraña y embalse de Ulldecona, así como de los puntos de aforo y estaciones meteorológicas utilizadas. Se resaltan los límites de las cuencas principales y el área semiendorreica notablemente karstificada de la Mola de Catí.
 
Existen dos embalses construidos en la década de 1960, el embalse de Pena en la vertiente W y el embalse de Ulldecona en la vertiente E, de 18 hm3 y 11 hmde capacidad respectivamente. En ambos casos el agua embalsada se destina al abastecimiento local y riego.

Resultados

Caracterización de la cuenca receptora del embalse de Ulldecona para la definición del modelo conceptual de funcionamiento

El embalse de Ulldecona, emplazado en el sureste de los Ports de Beseit (Figura 3), capta la cabecera del río de La Sénia y regula su curso aguas arriba de la pedanía de El Castell. Sus reservas se destinan al regadío en La Sènia y Ulldecona (ver Figuras 1 y 3).
La cuenca receptora, de 126 km2, consiste en dos subcuencas distintas en su ubicación y orientación: el barranco de La Fou hacia el NNE y el barranco de Corruscars hacia el SW (Figura 3) y desarrollo predominantemente según la de los Ports. La subcuenca del barranco de la Fou tiene mayor longitud y profundidad que la del barranco de Corruscars. Además, en esta última subcuenca la densidad de pinar es mayor que en la del barranco de La Fou. Estas características geomorfológicas parecen reflejarse en la química elemental del agua del embalse muestreada en el barranco de Corruscars (estación JUA802 en la Figura 3), no mostrada aquí, a través de una mayor concentración en iones mayoritarios respecto a la química del agua del embalse muestreada a la salida del mismo (estación JUA801 en la Figura 3), procedente en su mayoría del barranco de La Fou.
El embalse puede llenarse hasta verter por coronación con eventos de lluvia de dos o tres días de duración que totalicen unos 100 mm. Cuando esto ocurre, el embalse mantiene el nivel máximo de la lámina de agua durante aproximadamente 1 a 1,5 meses, con una evacuación diaria en el frente de presa de unos 0,5 m3·s−1 de agua. Por tanto, el llenado del embalse se produce tanto por la escorrentía superficial rápida como por la que se deriva de acuíferos colgados temporales y de cierta descarga subterránea. Para comprobarlo se procedió a la caracterización hidroquímica del agua embalsada en comparación con la composición química del agua de lluvia (punto de control TMM P3-B, Figura 4) y con la de agua subterránea de surgencias y pozos de los alrededores del embalse (Figura 4), no mostrada aquí.
Localización de los puntos de control de calidad del agua del embalse de Ulldecona de la red de puntos de aforo de la Confederación Hidrográfica del Júcar (Mapa base: Google Earth-Institut Cartogràfic de Catalunya)Figura 4.—Localización de los puntos de control de calidad del agua del embalse de Ulldecona de la red de puntos de aforo de la Confederación Hidrográfica del Júcar (Mapa base: Google Earth-Institut Cartogràfic de Catalunya).
 
Se trata de aguas bicarbonatadas cálcico-magnésicas con concentración de sulfato variable. Se pueden diferenciar 3 grupos a partir de los cuales se plantea la hipótesis del modelo conceptual de funcionamiento: a) grupo de menor concentración que corresponde la lámina de agua más superficial del embalse y las surgencias Font del Teix y Font de La Fou que descargan al embalse; su concentración es comparable a la del agua de lluvia, lo que indica que la descarga ha sido rápida, con escasa interacción con el terreno b) grupo con concentración media que corresponde a la Font dels Rossegadors y a las muestras del frente de presa localizadas al pie de la misma; indica que el agua embalsada procede tanto en la escorrentía superficial como del agotamiento de los acuíferos colgados de la zona vadosa como de la propia lluvia y c) grupo con mayor concentración de iones en general y en especial de sulfatos que corresponde a las muestras de agua de la Font de Sant Pere y piezómetro surgente aguas abajo del embalse, que es surgente la mayor parte del año (Figura 4); mayor tiempo de circulación por el terreno.

Análisis de hidrogramas

Estudio de las series temporales hidrométricas diarias del embalse de Ulldecona
Se dispone de las series temporales diarias de las reservas y de las salidas del embalse de Ulldecona para un periodo de 15 años. Por tanto es posible calcular las entradas diarias al embalse a partir de:
E=ΔV+S+Ev+f
siendo E=entradas, ΔV=variación de volumen, S=salidas, Ev=evaporación, f=fugas del embalse.
La serie de entradas al embalse (E) ha sido considerada como la escorrentía total de la cuenca, que es la suma de la escorrentía superficial y la de acuíferos colgados temporales. Las variaciones de volumen se han calculado a partir de la serie diaria de reservas calculadas en el embalse. Se supone que las fugas del embalse por la presa y su entorno son nulas ya que en la década de 1970 se realizaron inyecciones de cemento de la cerrada y no se produce drenaje significativo por sus galerías.
La evaporación media anual de agua del embalse (superficie máxima del embalse de 0,47 km2) calculada para el periodo 1994–2009 (Espinosa, 2014) representa el 5% de las entradas anuales, por lo que no se considerará en el cálculo de la serie temporal diaria de entradas ya que su valor es similar a los errores de medida y estimación del resto de variables.
La Figura 5 muestra la relación lineal ajustada de la serie diaria de entradas (escorrentía, E), con la precipitación anual (P) en la estación meteorológica PN Els Ports. Esta relación es E=0,23 (P-728) para valores anuales en mm. El umbral de precipitación (728 mm·a−1) por debajo del cual no se produce escorrentía tiene asociada una notable incertidumbre. Esta incertidumbre es atribuible a que la ocurrencia de escorrentía a lo largo del año depende de las condiciones previas de la cuenca, tanto meteorológicas como del estado de humedad del suelo. A escala de detalle, según observaciones en campo, los eventos concentrados de precipitación superiores a 100 mm en un día suelen dar lugar a escorrentía superficial, pero también en función de las condiciones previas de humedad en que se encuentre el terreno.
Relación entre entradas anuales (mm·a−1) del embalse de Ulldecona y precipitación anual (mm·a−1) de la estación PN Els Ports (izquierda) y de los valores acumuladosFigura 5.—Relación entre entradas anuales (mm·a−1) del embalse de Ulldecona y precipitación anual (mm·a−1) de la estación PN Els Ports (izquierda) y de los valores acumulados (mm) (derecha).
 
En el hidrograma se diferencian 2 fases en el agotamiento de los eventos de caudal de entrada (fase 1 y 2 en la Figura 6), una con pendiente mayor que la otra. Los tiempos de semi-agotamiento (tiempo para que el caudal se reduzca a la mitad) se han calculado en unos 6 días en promedio para la fase 1 y en unos 35 días para la fase 2. Se plantea la hipótesis de que la fase 1 representa la escorrentía superficial y la subsuperficial que se produce en la parte superior del terreno y la fase 2 la escorrentía procedente del agotamiento de los acuíferos colgados temporales.
Cálculo del agotamiento en los eventos de caudales de entrada del embalse de UlldeconaFigura 6.—Cálculo del agotamiento en los eventos de caudales de entrada del embalse de Ulldecona. Figura superior: hidrograma de caudales (no se han representado los caudales mayores que 14 m3·s−1) y selección de los tramos de ampliación; los valores de <0,2 m3·s−1 no tienen significación porque están dentro del error de estimación. Figura inferior: detalle de los agotamientos de caudal de entrada al embalse de Ulldecona con ordenadas en escala logarítmica.
 
De la serie diaria de caudales se ha calculado la aportación total, que es de 103 mm·a−1 para las entradas y de 100 mm·a−1 para salidas.
A partir de la representación gráfica de las entradas diarias al embalse las aportaciones medias anuales de escorrentía superficial del suelo superior se han evaluado en 30 mm·a−1 y en 73 mm·a−1 para la zona vadosa, como el área bajo la curva descrita por el hidrograma (Figura 7). El volumen de agua de escorrentía de la zona vadosa se calcula como la suma de las áreas delimitadas por el dibujo entre los agotamientos intermedios de cada evento de entrada (fase 2) y el volumen de agua de escorrentía del suelo superior (fase 1).
Entradas al embalse de Ulldecona en el periodo octubre 1994-septiembre 2009 e interpretación del hidrogramaFigura 7.—Entradas al embalse de Ulldecona en el periodo octubre 1994-septiembre 2009 e interpretación del hidrograma. La parte sombreada en azul es lo se que supone que corresponde a la escorrentía de la zona vadosa, apreciado por ajuste manual (Qe = caudal de entrada en hm3·d−1).
 

Análisis de hidrogramas de los afluentes del río Matarraña y Algars

Como apoyo a la interpretación del comportamiento hídrico del macizo de los Ports de Beseit frente a eventos de lluvia se han estudiado los hidrogramas de las series temporales de caudal para los ríos con nacimiento en los Ports localizados en la vertiente noroeste del macizo (Figura 3).
A partir de la representación gráfica y tras separar la escorrentía del suelo superior de la de la zona vadosa (sombreados de color rojo y azul respectivamente en la Figura 8), se han obtenido los valores de aportación total, aportación por escorrentía superficial y aportación por escorrentía de la zona vadosa (Tabla 1), considerando las superficies de las respectivas cuencas aguas arriba del punto de aforo correspondiente (Figura 3).
Caudal del río Ulldemó en el periodo octubre 1994-septiembre 2009 e interpretación del hidrogramaFigura 8.—Caudal del río Ulldemó en el periodo octubre 1994-septiembre 2009 e interpretación del hidrograma. El sombreado en rojo es lo que se identifica como escorrentía de los acuíferos colgados temporales en la zona vadosa y el en azul es la escorrentía del medio subterráneo.
 
Tabla 1.—Aportaciones medias anuales para los afluentes del río Matarraña y para el río Algars. La situación espacial de la estaciones se muestra en la Figura 3
PERIODOIDESTACIÓNAñosSup. km2Aportaciones medias anuales (mm·a−1)
ATASASSAL
1994–20109113Figuerales16552,250,252,00
1994–20109110Pena (Beceite)164952,494,2548,24
1994–20079052Matarraña (Ulldemó)1348176,6315,4681,780,00
1994–20109153Algars (Horta S. Joan)16115180,419,20160,94
*A: aportación (T: total, S: escorrentía superficial del terreno, SS: escorrentía zona vadosa, L: flujo subterráneo, ID: identificación).
El río Ulldemó es el que reproduce mejor los eventos de precipitación con generación de escorrentía similar a la producida en el embalse de Ulldecona. Los restantes difieren ya que el río Figuerales es de pequeña entidad y no nace propiamente en el macizo, el río Pena se alimenta de manantiales permanentes al pie de los Ports y el río Algars nace en el área notablemente karstificada de la Mola del Catí (Figura 3) y además recibe a lo largo de su recorrido aportes permanentes que incrementan considerablemente su caudal.

Balance de agua en el suelo con el código Visual Balan en la cuenca receptora del embalse de Ulldecona

La obtención de la escorrentía media anual en la cuenca receptora del embalse de Ulldecona se ha realizado mediante el balance de agua en el suelo con el código Visual Balan v2.0 (Samper, 1997/2005). Se ha partido del balance de agua en el suelo superior de la zona de estudio (Espinosa, 2014), utilizando el método del Número de Curva (US-SCS, 1972; 1985; Ferrer et al., 1995) para calcular la escorrentía superficial de los eventos de lluvia y se han utilizado los mismos parámetros de la cubierta vegetal y suelo superior, dado que las características son similares. Dichos parámetros representan un suelo poco desarrollado con roca aflorante y pendientes mayores al 1% (Tabla 2, Espinosa, 2014). Además, se ha considerado que existe interceptación puesto que hay zonas con pinares relativamente densos.
Tabla 2.—Parámetros hidráulicos finales introducidos en el código Visual Balan para el balance de agua en el suelo en la cuenca del Embalse de Ulldecona
DATOSAños15
HIDROMETEOEMETPN Els Ports
Punto ControlAforo salida Embalse de Ulldecona
área cuenca receptora (km2)126
CUBIERTA VEGETALInterceptación-Cubierta vegetalBosque de pinares
Método de cálculo: Singh
Capacidad de almacenamiento (mm)1,27
Coeficiente de interceptación0,2
SUELO EDÁFICOPorosidad total0,3
Humedad inicial0,04
Conductividad hidráulica (m·d−1)0.1
Reserva útil máx. (mm)20
ETPdatos usuario
ETR por el método exponencialUmbral déficit hídrico, CEME (mm)10
CKRD0,1
Escorrentía superficial (Número de curva)Lluvia mínima del aguacero (mm)1,5
Número de curva50
ZONA NO SATURADAResolución por Método ExplícitoCoef. agotam. flujo hipodérmico (d−1)0.099
Tiempo semi-agotamiento (d)7
Contenido inicial de agua (mm)10
Cond hidráulica vertical (m/d)0,1
Coeficiente de percolación (d−1)0,231
Tiempo semi-agotamiento (d)3
ACUÍFEROCoeficiente de agotamiento (α) (d−1)0,0036
Tiempo semi-agotamiento (d)192,5
Coeficiente almacenamiento (porosidad drenable)0,025
Nivel inicial (m snm)43,63
Nivel de descarga (m snm)30
Para el balance hidrometeorológico se ha utilizado la serie diaria de datos de precipitación (mm), temperatura media (°C), velocidad del viento (km·h−1), humedad relativa (%) y evapotranspiración potencial (mm) de la estación meteorológica PN Els Ports.
El balance de agua en el suelo se calcula teniendo en cuenta la infiltración de agua de lluvia, que es la precipitada menos la interceptación y la escorrentía superficial, descontando la evapotranspiración real calculada por el método exponencial (Samper 1997/2005), con un umbral de déficit hídrico de 10 mm (valor por debajo del cual la evapotranspiración real decrece respecto a la potencial). El excedente más el agua de precipitación que pasa por el suelo como flujo preferente por fisuras atraviesa descendentemente la base del suelo constituye la recarga en tránsito diferida que percola verticalmente por el medio no saturado y que en su recorrido se retrasa a través de variación del almacenamiento y en parte sale lateralmente dando lugar a la escorrentí diferida o lenta. El cálculo se realiza considerando que la salida de agua del almacenamiento en el suelo decrece exponencialmente (método modificado según Samper 1997/2005). Los resultados del balance de agua en el suelo en la cuenca del embalse de Ulldecona se muestran en la Tabla 3 (periodo de estudio 1994–2009). La media anual de la escorrentía superficial y de la zona vadosa es de 107 mm·a−1, suponiendo el 20 % de la recarga producida, en torno a 500 mm·a−1 (Figura 9).
Hidrograma de precipitación versus escorrentía superficial y de la zona vadosa producida en los PortsFigura 9.—Hidrograma de precipitación versus escorrentía superficial y de la zona vadosa producida en los Ports (mm·d−1), derivado de la escorrentía calculada por el balance de agua en el suelo con el código Visual Balan.
 
Tabla 3.—Resultados medios del balance de agua en el suelo, en mm·a−1, para la cuenca receptora del Embalse de Ulldecona en el periodo octubre de 1994 a septiembre de 2009
PrecipitaciónInterceptaciónEscorrentía superficialEscorrentía zona vadosaETRRecargaCaudal total
1087985156370515619
Para la calibración del modelo del balance de agua se ha utilizado la serie histórica de caudales diarios de entrada al embalse de Ulldecona. Los caudales totales calculados a partir del balance de agua en el suelo son considerablemente mayores que los medidos debido a que son la suma de los caudales de escorrentía superficial, escorrentía en zona vadosa y flujo subterráneo en el punto de aforo considerado (Figura 10). Según el modelo conceptual de funcionamiento considerado una parte del embalse de Ulldecona está emplazada por encima del nivel freático del acuífero regional y, el caudal aforado corresponde sólo a las entradas por escorrentía superficial y de la zona vadosa y una pequeña fracción de la recarga, ya que la casi totalidad de la recarga es transferida lateralmente a la Plana de La Galera; lo que está favorecido por la disposición alargada transversal del embalse. De esta forma, los caudales de entrada acumulados calculados y medidos (2438 m3·s−1 y 2240 m3·s−1 respectivamente) de escorrentía del suelo superior y de los acuíferos colgados temporales para el periodo 1994–2009 no difieren de forma significativa.
Evolución temporal de los caudales diarios medidos y calculados (m3·s−1) y de la precipitaciónFigura 10.—Evolución temporal de los caudales diarios medidos y calculados (m3·s−1) y de la precipitación (mm·d−1). No se han representado los caudales >50 m3·s−1.
 
Para determinar de la bondad del ajuste entre los caudales de entrada del embalse con la escorrentía superficial más la vadosa calculada por el modelo se ha aplicado el Criterio D de Schultz (Cabrera, 2012), el cual representa la desviación de los caudales calculados respecto de los medidos:
donde Qcal,i es el valor simulado, Qi es el valor medido, Qmax es el caudal máximo observado en el periodo de estudio y n el número de datos de la serie. D puede variar entre 0 y 18, considerándose que el ajuste es muy bueno cuando D queda en el intervalo 0 a 3. El valor obtenido es D=0,008.
Se ha realizado un análisis de sensibilidad de los diferentes caudales que componen el caudal total y de los otros componentes del balance frente a los parámetros que presentan mayor incertidumbre y que mayor influencia pueden tener en su variación (Figura 11). También se ha obtenido el coeficiente de sensibilidad (CS) equivalente al factor de ponderación en la estimación de la varianza del parámetro analizado, que es la pendiente de la curva de sensibilidad en el entorno del valor central calculado.
Sensibilidad de los componentes del balance de agua frente a los parámetros de mayor influenciaFigura 11.—Sensibilidad de los componentes del balance de agua frente a los parámetros de mayor influencia: (a) espesor equivalente del suelo; la escorrentía superficial (del suelo superior) no está afectada por el espesor equivalente del suelo según el modo de cálculo realizado, (b) número de curva. (c), coeficiente de flujo preferente, CRKD y (d) coeficiente de agotamiento de la zona vadosa.
 
La variación de la reserva máxima en el suelo se representa como espesor equivalente del suelo (Figura 11), ya que el programa no permite su consideración directa. La reserva útil máxima en mm equivale a 40 veces el espesor del suelo en m para una diferencia volumétrica entre la capacidad de campo y el punto de marchitez de 0,04.
El análisis de sensibilidad muestra que la escorrentía superficial sólo es sensible de forma importante al número de curva con un coeficiente de sensibilidad (CS) para valores de Número de Curva entre 45 y 55 es de 4 mm·a−1 por unidad de número de curva. El número de curva, definido por las características de cobertura de suelo (uso y pendiente), determina en gran parte el comportamiento hidrológico de la cuenca en relación con la capacidad de producir escorrentía en función de la magnitud del evento de precipitación que la genera. El coeficiente de flujo preferente y el coeficiente de agotamiento de la zona vadosa son otros dos parámetros que afectan sensiblemente al caudal de agua drenado de la zona no saturada y a la recarga.

Discusión y conclusiones

El modelo conceptual de funcionamiento hidrodinámico de la cuenca receptora del embalse de Ulldecona parte de la hipótesis de que el llenado del embalse es mayoritariamente debido a la aportación de dos tipos de flujo, uno superficial con un agotamiento rápido y otro de escorrentía de la zona vadosa, más lento, que corresponde al agotamiento de niveles acuíferos colgados temporales (Figura 6).
Dicha hipótesis se apoya en el estudio hidroquímico (Espinosa, 2014), en el cual se ha comparado la concentración de calcio, magnesio y cloruro de las surgencias situadas aguas arriba del embalse de Ulldecona, del agua de la zona superficial, media y profunda del embalse y de piezómetros y surgencias aguas abajo del frente de presa (Figura 12). En dicho estudio se aprecia una notable influencia del agua de lluvia en el agua muestreada en el embalse y en las surgencias localizadas aguas arriba del mismo, corroborando el rápido agotamiento de estos manantiales y de las laderas de la cuenca que vierten al mismo. También se refleja la contribución del terreno en las muestras del frente de presa y de manantial existente a pie de presa, con mayor concentración que las muestras del agua superficial del embalse pero conservando la marca del agua de lluvia. Esta composición hizo considerar una posible mezcla de aguas debida a la conexión hidráulica entre el embalse y el acuífero regional, siendo el flujo subterráneo el que estuviera contribuyendo a la recarga del embalse, pero el estudio de la comparación de la evolución de los hidrogramas de llenado y vaciado del embalse con las oscilaciones de niveles de piezómetros situados en el entorno (no aportado aquí) no refleja esta posibilidad.
Esquema del funcionamiento hidrodinámico de la cuenca receptora del embalse de Ulldecona y localización de los puntos de muestreo de agua superficial y subterráneaFigura 12.—Esquema del funcionamiento hidrodinámico de la cuenca receptora del embalse de Ulldecona y localización de los puntos de muestreo de agua superficial y subterránea. R: recarga en los Ports de Beseit, 1: Font del Teix, 2: Font de la Fou, 6: Piezómetro, 7: Font dels Rossegadors, 8: Font de Sant Pere; A: muestra de la zona media del embalse, B: muestra de la zona profunda del embalse y D: muestra de agua superficial del embalse.
 
Con todo lo anterior puede definirse que el modelo de funcionamiento de la cuenca receptora del embalse de Ulldecona consiste en escorrentía rápida en el suelo superior y escorrentía más lenta en la zona vadosa como consecuencia del agotamiento de niveles acuíferos colgados temporales. Ambos flujos alimentan al embalse, pero gran parte de la recarga se transfiere a otras cuencas o a aguas abajo, ya que la mayor parte del embalse está situado por encima del nivel piezométrico del acuífero regional.
Este modelo de funcionamiento de escala local puede extrapolarse al resto de los Ports de Beseit ya que aunque el grado de karstificación en todo el macizo sea variable a nivel de cuenca de barranco, en general las características geomorfológicas e hidrodinámicas son similares (Espinosa et al., 2015). Según este modelo, en la vertiente SE de los Ports, esta escorrentía superficial y sub-superficial es transferida lateralmente por los materiales de piedemonte a la cuenca adyacente de la Plana de La Galera. En muy raras ocasiones alcanzan al río Ebro.
Una vez obtenidos los valores de escorrentía media anual con el estudio de los hidrogramas de llenado-vaciado del embalse de Ulldecona y caudales de agua superficial de la vertiente NW del macizo y con el balance de agua en el suelo en la cuenca receptora del embalse de Ulldecona, ha sido posible comparar los resultados obtenidos con el balance general de agua en el suelo (Espinosa, 2014). Dichos valores de escorrentía varían entre 95 y 115 mm·a−1 (Tabla 4). A continuación se hace una pequeña reflexión sobre la validez de dichos resultados en el sistema de los Ports de Beseit.
Tabla 4.—Valores de escorrentía media anual obtenida por los diferentes métodos de estimación. S: superficie en km2, A: aportación en mm·a−1, AT: aportación total, ASS: aportación escorrentía de la zona vadosa, AS: aportación superficial, AL: aportación de escorrentía lenta (flujo subterráneo)
Aportación media anual mm a−1
PERIODOIDESTACIÓNAñosS km2ATASSASAL
HIDROGRAMAS
1994–20109113Figuerales165522
1994–20109110Pena (Beceite)164952484
1994–20079052Matarraña (Ulldemó)1348177811580
1994–20109153Algars (Horta SJ)1611518016119
1994–2009Embalse Ulldecona
Entradas151261037330
Salidas15126100
VISUAL BALAN
1994–2009Embalse Ulldecona151261075651
1994–2011Balance general de agua en el suelo (Espinosa, 2014)SZ417175103
SZ51713895–113
Las aportaciones de la cuenca receptora del embalse de Ulldecona calculadas a partir del hidrograma de volumen de entradas al embalse son de 103 mm·a−1. La diferencia con las salidas es de 3 mm·a−1, lo que supone un error del 3% que es menor que el de las propias medidas hidrométricas y está dentro de los errores de estimación atribuibles a la evaporación en el embalse y posibles pequeñas infiltraciones en el vaso del embalse no identificadas. Es posible que existan errores en la medición o incluso correcciones introducidas en las series, de las cuales se desconoce la metodología aplicada.
Con el balance de agua en el suelo se ha obtenido como resultado de la aportación 107 mm·a−1, que es sensible al parámetro Número de Curva, con un coeficiente de sensibilidad de 4 mm a−1 por unidad de número de curva. El número de curva se ajusta en función de las características del suelo, por lo que un estudio más en detalle en que se distingan zonas en función de la cubierta vegetal podría reducir de la incertidumbre de la escorrentía.
Los resultados de los hidrogramas tienen una incertidumbre asociada considerable, propia del método, y a pesar de ello hay coincidencia de magnitudes con los balances de agua.
Las conversaciones con especialistas de la zona y las observaciones de campo apuntan a que la escorrentía superficial se produce sólo cuando se tienen determinadas condiciones del estado del suelo previas al evento de lluvia. Por ejemplo, se produce escorrentía si ha llovido durante algunos días consecutivos y la lluvia acumulada en dichos días supera los 100 mm,, como se observa en los meses de invierno de los años 1995, 1996, 1997, 2002, 2003, 2004 y 2006 (ver Figura 9). Si no ha llovido durante un dilatado periodo de tiempo y se produce un evento de precipitación superior a los 100 mm·d−1 también se produce escorrentía, como se observa en octubre de 2000 y en diciembre de 2007. Además, analizando las series hidrométricas de escorrentía y precipitación diaria, la ocurrencia de escorrentía en función de los eventos de precipitación tiene lugar en momentos concretos, los cuales responderían al comportamiento observado en campo (Figura 9).
Para la estimación de los recursos hídricos del sistema Ports de Beseit-Plana de La Galera (Espinosa, 2014) se planteó la hipótesis de que la desviación estándar de la escorrentía superficial podría suponer el 20% de su valor. Por tanto, la magnitud de la escorrentía superficial media anual que tiene lugar en los Ports de Beseit se evalúa como 105±20 mm·a−1. Este valor podría definirse con mayor exactitud realizando un estudio de la incertidumbre asociada a cada una de las variables que intervienen en la estimación de la escorrentía superficial mediante la estimación de sus varianzas.
Se ha comprobado que existen dos tipos de flujo que llenan el embalse, uno superficial con agotamiento rápido, con un tiempo de semi-agotamiento medio de unos 6 días, y otro de escorrentía de la zona vadosa más lento con un tiempo de semi-agotamiento de unos 35 días, que corresponde a la descarga de los niveles acuíferos temporales colgados en el medio no saturado. Este modelo de funcionamiento de escala local es extrapolable al resto de los Ports de Beseit ya que, aunque el grado de karstificación en todo el macizo sea variable, en general las características geomorfológicas e hidrodinámicas son similares (Espinosa et al., 2015).
La escorrentía media anual estimada en la cuenca receptora del embalse de Ulldecona es comparable y de la misma magnitud cuando se calcula a partir de los caudales de entrada al mismo (103 mm·a−1) o por balance de agua en el suelo con el código Visual Balan (107 mm·a−1), siendo todos ellos a su vez coherentes con el rango de escorrentía media anual del balance de agua en el suelo con el código Visual Balan aplicado en toda la superficie de los Ports de Beseit (95 a 115 mm·a−1).
El análisis de sensibilidad de las variables del balance de agua en el suelo en la cuenca receptora del embalse de Ulldecona muestra que la escorrentía depende especialmente del número de curva seleccionado con un CS de 4 mm·a−1 por unidad de NC. La realización de un análisis de las varianzas de las variables que intervienen en el cálculo de la escorrentía superficial contribuiría a la disminución de su incertidumbre.
Como el valor de la escorrentía superficial media anual se evalúa en 105±20 mm·a−1, la escorrentía superficial representa entre un 20–30% de la recarga calculada a partir del balance general de agua en el suelo y del balance de la deposición atmosférica de ión cloruro, en torno a 500±60 mm·a−1 y a 350±150 mm·a−1 respectivamente (Espinosa 2014). La importancia de tener en cuenta o no la escorrentía superficial en la estimación de recursos de una cuenca de estas características queda patente ya que afecta significativamente a los resultados de recarga por la precipitación, sobreestimándolos, sobre todo en la aplicación del balance de la deposición atmosférica de ión cloruro (Espinosa, 2014).

AGRADECIMIENTOS

La investigación se enmarca en el desarrollo de la beca de FPI (CGL2009-12910-C03-01) del primer autor, dentro del proyecto REDESAC (MICINN CGLl2009-12910-C03-01). Los autores agradecen la disponibilidad de todas las personas que han hecho posible el desarrollo de los trabajos de campo, tanto en instalación de captadores de agua de lluvia como en localización y muestreo de puntos de interés. También se agradece a los laboratorios de análisis químico elemental e isotópico ambiental la eficiencia de su trabajo y aportación de ideas, en especial a Santiago Balagué, químico profesional y a Albert Solé de la Universidad de Barcelona. Diversos expertos en la zona han proporcionado notables datos e información, en especial Teresa Carceller, Javier San Román y Miguel Ángel García Vera de la Confederación Hidrográfica del Ebro, Javier Lambán y Antonio Azcón de la Unidad del IGME en Zaragoza y Josep Torrens, hidrogeólogo de Tarragona. Se agradece también la ayuda para acceder a los datos a la Confederación Hidrográfica del Ebro y de la Confederación Hidrográfica del Júcar.

Referencias


Alcalá, F.J.; Custodio, E.; Contreras, S.; Araguás, L.J.; Domingo, F.; Pulido-Bosch, A. & Vallejos, A. (2006). Influencia de la aridez climática, la altitud y la distancia al mar sobre el contenido en cloruro y en 18O del agua de recarga y del agua subterránea en macizos carbonatados costeros del SE peninsular español. Caso de Sierra de Gádor. In: III Simposio Internacional sobre tecnología de la intrusión de agua de mar en acuíferos costeros. IGME. Madrid 1: 871–885.
Alcalá, F.J.; Cantón, Y.; Contreras, S.; Were A.; Serrano-Ortiz, P.; Puigdefábregas, J.; Solé-Benet, A.; Custodio, E. & Domingo, F. (2011). Diffuse and concentrated recharge evaluation using physical and tracer techniques: results from a semiarid carbonate massif aquifer in southeast Spain. Environmental Earth Sciences, 62 (3): 541–557. http://dx.doi.org/10.1007/s12665-010-0546-y
Allison, G.B. (1988). A review of some of the physical chemical and isotopic techniques available for estimating groundwater recharge. In: Estimation of Natural Groundwater Recharge. Boston. NATO ASI Series, 222: 49–72. http://dx.doi.org/10.1007/978-94-015-7780-9_4
Allison, G.B.; Gee, G.W. & Tyler, S.W. (1994). Vadose-zone techniques for estimating groundwater recharge in arid and semiarid regions. Soil Science Society of America Journal, 58 (1): 6–14. http://dx.doi.org/10.2136/sssaj1994.03615995005800010002x
Badiella, P. (2009). Estudi d´actualització hidrogeológica del sector de La Carrova y Plana de la Galera per avaluació de recursos hidrològics subterranis pel subministrament a les poblacions litorals del Montsià. Agència Catalana de l’Aigua, Barcelona. (Informe interno).
Bayó, A.; Loaso. C.; Aragonés, J.M. & Custodio, E. (1992). Marine intrusion and brackish water in coastal aquifers of Southern Catalonia and Castelló (Spain): a brief survey of actual problems and circumstances. In: Proceedings of the 12th Salt Water Intrusion Meeting, Barcelona, Spain, 1992: 741–766.
Beven, K.J. (1989). Changing ideas in hydrology: the case of physically based models. Journal of Hydrology, 105 (1–2): 157–172.http://dx.doi.org/10.1016/0022-1694(89)90101-7
Cabrera, J. (2012). Calibración de modelos hidrológicos. Instituto para la Mitigación de los Efectos del Fenómeno El Niño, Universidad Nacional de Ingeniería, Facultad de Ingeniería Civil, Perú.
Cabrera, M.C.; Naranjo, G.; Hernández-Quesada, P.; Benavides, A.; Estévez, E.; Cruz-Fuentes, T. & Custodio, E. (2013). Estimación de la recarga natural a los acuíferos del norte de Gran Canaria a partir del balance de cloruros. In: VIII Congreso Argentino de Hidrogeología, VI Seminario Hispano-Latinoamericano sobre Temas Actuales en Hidrología Subterránea, Buenos Aires, 2013.
Cardoso da Silva, G. Jr. (1997). Comportamiento de los manantiales del karst nororiental de la Serra de Tramuntana, Mallorca. Tesis doctoral. Universidad Politécnica de Cataluña, Barcelona.
CHE (1991). Estudio de los recursos hídricos subterráneos de los acuíferos de la margen derecha del Ebro. Zona III-Acuíferos de la zona baja. Informe General MOPT. Oficina de Planificación Hidrológica de la Confederación Hidrográfica del Ebro. Clave: 09.803.201. 32 pp.
CHE (2008). Plan Hidrológico del río Matarraña (versión provisional de la Confederación Hidrográfica del Ebro). 179 pp.
CHE (2009). Identificación y caracterización de la interrelación que se presenta entre aguas subterráneas, cursos fluviales, descarga por manantiales, zonas húmedas y otros ecosistemas naturales de especial interés hídrico. Encomienda de gestión para la realización de trabajos científico-técnicos de apoyo a la sostenibilidad y protección. Memoria Resumen IGME, Dirección General del Agua. 32 pp.
Cruz-Fuentes, T.; Heredia, J. & Cabrera, M.C. (2008). Cálculo del umbral de escorrentía mediante la generación automática del número de curva con un SIG. Aplicación al Barranco de La Aldea (Gran Canaria). In: VII Congreso Geológico de España, Las Palmas de Gran Canaria, 2008. Geo-Temas, 10: 837–840.
Cruz, T.; Benavides, A.; Naranjo, G.; Cabrera, M.C.; Hernández, P.; Estévez, E.; Martín, L.F. & Custodio, E. (2011). Estimación de la recarga natural media en la zona noreste de Gran Canaria (Islas Canarias) mediante el balance de cloruros atmosféricos. Las Aguas Subterráneas: Desafíos de la Gestión para el Siglo XXI. In: Congreso Ibérico de Aguas Subterráneas. Zaragoza. Asociación Internacional de Hidrogeólogos–Grupo Español. Tema 3, Póster–comunicación. 7 pp (1 póster).
Custodio, E. (2011). Hidrogeología en regiones semiáridas y áridas. In: VII Congreso Argentino de Hidrogeología, V Seminario Hispano–Latinoamericano Sobre Temas Actuales de la Hidrología Subterránea. Hidrogeología Regional y Exploración Hidrogeológica. Salta, Argentina: 1–17.
Custodio, E.; Llamas, M.R. & Samper, J. (eds.) (1997). La evaluación de la recarga a los acuíferos en la planificación hidrológica. Asociación Española de Hidrogeólogos–Grupo Español /ITGE. Madrid, 455 pp.
Espinosa, S. (2014). Estimación de la recarga media anual de acuíferos: aplicación en el Baix Ebre. Tesis doctoral. Universidad Politécnica de Cataluña, Barcelona, 322 pp. http://hdl.handle.net/10803/283983
Espinosa, S.; Custodio, E. & Loaso, C. (2014a). Estimación de la recarga en un sistema acuífero de montaña y llano: caso de los Ports de Beseit-Tortosa-Plana de La Galera (Baix Ebre, Tarragona, España). In: V Congreso Colombiano de Hidrogeología, Medellin: ponencia 86(1), 8 pp.
Espinosa, S.; Custodio, E. & Loaso, C. (2014b). Estimación de la recarga media multianual a acuíferos: aplicación al Baix Ebre, In: Gómez–Hernández, J. & Rodrigo–Ilarri, J. (Eds.). CIAS 2014, II Congreso Ibérico de las Aguas Subterráneas, Valencia, 2014. Universitat Politècnica de València: 285–301.
Espinosa, S.; Custodio, E. & Loaso, C. (2015). Comparación de la recarga natural estimada con el balance de agua en el suelo y con el balance de la deposición atmosférica de cloruro en un sistema carbonatado en el área semiárida del Baix Ebre, Cataluña, España. Ingeniería del Agua, 19 (3): 135–155. http://dx.doi.org/10.4995/ia.2015.3540
Ferrer, M.; Rodríguez, J. & Estrela, T. (1995). Generación automática del número de curva con sistemas de información geográfica. Ingeniería del agua, 2(4): 43–58. http://dx.doi.org/10.4995/ia.1995.2686
Gasparini, A.; Custodio, E.; Fontes, J.Ch.; Jimenez, J. & Núñez, J.A. (1990). Exemple d’étude géochimique et isotopique de circulations aquifères en terrein volcanique sous climat semi–aride (Amurga, Gran Canaria, îles Canaries). Journal of Hydrology, 114 (1–2): 61–91. http://dx.doi.org/10.1016/0022-1694(90)90075-9
Guan, H.; Love, A. J.; Simmons, C. T.; Hutson, J. & and Ding, Z. (2010). Catchment conceptualisation for examining applicability of chloride mass balance method in an area with historical forest clearance. Hydrology and Earth System Science, 14: 1233–1245.http://dx.doi.org/10.5194/hess-14-1233-2010
Hardie, M.A.; Doyle, R.B.; Cotching, W.E. & Lisson, S. (2012). Subsurface lateral flow in texture-contrast (Duplex) soils and catchments with shallow bedrock. Applied and Environmental Soil Science, 2012: 861358. http://dx.doi.org/10.1155/2012/861358
Hornero, J.; Manzano, M.; Ortega, L. & Custodio, E. (2013). Recarga natural al acuífero de Alcadozo (España) mediante balance de cloruro atmosférico y balance de agua en el suelo. In: González, N., Kruse, E.E., Trovatto, M.M., Laurencena, P. (Eds). Temas Actuales de la Hidrología Subterránea. Editorial de la Universidad de La Plata (Edulp), La Plata: 189–196.
Lambán, L.J. (1998). Estudio de la recarga y del funcionamiento hidrogeológico de la unidad Anoia (cordillera Prelitoral catalana). Tesis doctoral. Universidad Politécnica de Cataluña, Barcelona, 207 pp.
Manning, A.H. (2002). Using noble gas tracers to investigate mountain-block recharge to an intermountain basin. Ph.D thesis. University of Utah, Salt Lake City, Utah, 187 pp.
Molinero, J.; Custodio, E.; Sahuquillo, A. & Llamas, M.R. (2011). Groundwater in Spain: legal framework and management issues. In: Findakis, A.N. & Sato, K. (Eds.). Groundwater Management Practices. CRC Press/Balkema. Leiden: 123–137. http://hdl.handle.net/2117/14364
Nelson, S.T. & Mayo, A.L. (2014). The role of interbasin groundwater transfers in geologically complex terranes, demonstrated by the Great Basin in the western United States. Hydrogeology Journal, 22 (4): 807–828. http://dx.doi.org/10.1007/s10040-014-1104-6
O’Brien, R.J.; Misstear, B.D.; Gill, L.W.; Johnston, P.M. & Flynn, R. (2013). Quantifying flows along hydrological pathways by applying a new filtering algorithm in conjunction with master recession curve analysis. Hydrological Processes, 28 (26): 6211–6221. http://dx.doi.org/10.1002/hyp.10105
Sahuquillo, A.; Custodio, E. & Llamas, M.R. (2009). La gestión de las aguas subterráneas. Tecnología del Agua, 305: 60–67 y 306: 54–67.
Samper, J.; Huguet, Ll.; Ares, J. & García-Vera, M.A. (1999/2005). Manual del usuario del programa VISUAL BALAN v2.0: código interactivo para la realización de balances hidrológicos y la estimación de la recarga. Publicación Técnica de ENRESA. Madrid. 134 pp.
Samper. J.; Pisani. B. & Espinha, J. (2015). Hydrological models of interflow in three Iberian mountain basins. Environmental Earth Sciences, 73 (6): 2645–2656. http://dx.doi.org/10.1007/s12665-014-3676-9
Tourís, R. (1986). Recursos hídrics de la vessant catalana de l’Ebre. Servei Geològic de Catalunya. Departament de Política Territorial i Obres Publiques. Barcelona. 300 pp. (Informe interno del Servei Geològic de Catalunya).
US-SCS (United States Soil Conservation Service). (1972). National Engineering Handbook, Section 4, Hidrology. U.S. Department of Agriculture, Washington, D.C.
US-SCS (United States Soil Conservation Service). (1985). National Engineering Handbook, Section 4, Hydrology (revised). U.S. Department of Agriculture, Washington, D.C.
Varni, M. & Custodio, E. (2013). Estimación de la recarga al acuífero del Azul: 1. Análisis de las características climáticas. 2. Balances de agua en el suelo y de deposición atmosférica de cloruro. In: González, N.; Kruse, E.E.; Trovatto, M.M.; Laurencena, P. (Eds). Agua Subterránea Recurso Estratégico. Editorial de la Universidad de La Plata (Edulp). La Plata. Tomo 1: 31–37 y38–45.
Welch, L.A. & Allen, D. M. (2014). Hydraulic conductivity characteristics in mountains and implications for conceptualizing bedrock groundwater flow. Hydrogeology Journal, 22 (5): 1003–1026. http://dx.doi.org/10.1007/s10040-014-1121-5
Wilson, J.L. & Guan, H. (2004). Mountain-Block Hydrology and Mountain-Front Recharge. New Mexico Institute of Mining and Technology, Socorro, New México. In: Groundwater Recharge in a Desert Enviroment: the Southwestern United States. American Geophysical Union: 113–137. http://dx.doi.org/10.1029/009WSA08
Wood, W.W. & Sanford, W.E. (1995). Chemical and isotopic methods for quantifying groundwater recharge in a regional semiarid environment. Ground Water 33 (3): 458–468. http://dx.doi.org/10.1111/j.1745-6584.1995.tb00302.x